
The WPF List Box Can Do That?!
- Part 3

This is part three of a series of blog posts on using the WPF list box. In this post you
learn to use data triggers allow you to change how each row is presented based on
data in your data source. You can use a single trigger or multiple triggers depending
on your needs. You are also going to build a converter class to accept two or more
pieces of data and the return value is used as a data trigger.
Before reading this blog post, it is recommended you read my blog post on Using
WPF List Controls - Part 1. This will introduce you to the data layer used in this
blog post and review how WPF list controls work.

Single Data Trigger
A data trigger in WPF allows you to modify a property, or properties, of a UI element
based on some data contained in your result set. For example, in our list box of
product data, there is a property named SellEndDate. Some of these values in the
SellEndDate field are null. If a value is null, highlight that record in the list box by
changing the background color of that row. A data trigger allows you to setup a
binding to the SellEndDate property and the value it should be equal to. If that
condition is met, you can write XAML to change the UI. For example, in the data
trigger shown below, the background color is changed to "Gray" as shown in Figure
3. Data triggers are placed into the <Style> element with your other styles for your
UI element.

<Style TargetType="ListBoxItem">
 <Setter Property="HorizontalContentAlignment"
 Value="Stretch" />
 <Style.Triggers>
 <DataTrigger Binding="{Binding Path=SellEndDate}"
 Value="{x:Null}">
 <Setter Property="Background"
 Value="Gray" />
 </DataTrigger>
 </Style.Triggers>
</Style>

The WPF List Box Can Do That?! - Part 3

2 The WPF List Box Can Do That?! - Part 3
Copyright © 2012-2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 1: Change the background color based on data

Multiple Data Triggers
You are not limited to just a single data trigger; you may add as many triggers as
you want. The more triggers you add, however, the slower your list box might
display. In the code snippet below, you can see that an additional trigger has been
added that checks for the ProductCategoryID to be the value "18". If that value
occurs in the result set, then the background color of that row turns to the color
turquoise as shown in Figure 4.

Multiple Data Triggers

The WPF List Box Can Do That?! - Part 3 3
Copyright © 2012-2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

<Style TargetType="ListBoxItem">
 <Setter Property="HorizontalContentAlignment"
 Value="Stretch" />
 <Style.Triggers>
 <DataTrigger Binding="{Binding Path=SellEndDate}"
 Value="{x:Null}">
 <Setter Property="Background"
 Value="Gray" />
 </DataTrigger>
 <DataTrigger Binding="{Binding Path=ProductCategoryID}"
 Value="18">
 <Setter Property="Background"
 Value="Turquoise" />
 </DataTrigger>
 </Style.Triggers>
</Style>

Figure 2: Add multiple triggers to change background color based on multiple data values

The WPF List Box Can Do That?! - Part 3

4 The WPF List Box Can Do That?! - Part 3
Copyright © 2012-2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Multiple Pieces of Data as a Trigger
Sometimes you may need to perform calculations on the data to figure out whether
to apply a data trigger. For example, turn the background color to gray of those
rows whose profit margin is greater than a certain value. To perform this calculation,
you need three pieces of information; the cost of the product, the price of the
product, and the profit margin to be greater than. In the Product class there are two
properties StandardCost and ListPrice, but there is no property for
ProfitMarginGreaterThan. Since you can't perform calculations in XAML, you need
to create a class to calculate the profit.
If you have the source code to the Product class, you can add a new property and
perform the calculation there. However, if you don't, create a multi-binding converter
class. A multi-binding converter class named ProfitMarginGreaterThanConverter is
shown in the listing below.

public class ProfitMarginGreaterThanConverter : IMultiValueConverter
{
 public object Convert(object[] values, Type targetType,
 object parameter, CultureInfo culture) {
 decimal ret = 0;
 decimal cost = 0;
 decimal price = 0;
 decimal margin = 50;

 if (values.Count() > 1) {
 // First parameter is cost
 cost = System.Convert.ToDecimal(values[0]);
 // Second parameter is price
 price = System.Convert.ToDecimal(values[1]);
 if (parameter != null) {
 // parameter is value to be greater than
 margin = System.Convert.ToDecimal(parameter);
 }
 // Calculate the profit margin
 ret = Math.Round(((price - cost) / cost), 1);
 }

 return (ret * 100) > margin;
 }

 public object[] ConvertBack(object value, Type[] targetTypes,
object parameter, CultureInfo culture) {
 throw new NotImplementedException();
 }
}

The difference between a multi-binding converter and a normal converter class is
this class implements the IMultiValueConverter interface. The Convert() method
accepts an array of object values instead of just a single value that a normal
converter class accepts.

Multiple Pieces of Data as a Trigger

The WPF List Box Can Do That?! - Part 3 5
Copyright © 2012-2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Within the code, you read the values[] array to get the values passed in. These
values are passed positionally, so you need good documentation on the usage of
this class. This class reads the cost from the first array element, then the list price
from the second element. The parameter argument is the value for the profit margin
to be greater than. With these three pieces of information you can determine if the
profit margin is greater than the value passed to this class and return a true or a
false value.
To use this class, create an instance of this class in the <UserControl.Resources>
section in your user control. Assign a unique Key value to this instance as shown in
the code below.

<UserControl.Resources>
 <local:ProfitMarginGreaterThanConverter
 x:Key="profitMarginGTConverter" />
</UserControl.Resources>

Defining a multi-binding data trigger is different from a single value data trigger as
you can see in the following XAML code.

<Style TargetType="ListBoxItem">
 <Setter Property="HorizontalContentAlignment"
 Value="Stretch" />
 <Style.Triggers>
 <DataTrigger Value="True">
 <DataTrigger.Binding>
 <MultiBinding
 Converter="{StaticResource profitMarginGTConverter}"
 ConverterParameter="60">
 <Binding Path="StandardCost" />
 <Binding Path="ListPrice" />
 </MultiBinding>
 </DataTrigger.Binding>
 <Setter Property="Background"
 Value="Gray" />
 </DataTrigger>
 </Style.Triggers>
</Style>

In the <DataTrigger> element you set the attribute Value to the value you expect to
be returned from the multi-binding converter class. In this case a "True" value is
supposed to be returned for this trigger to be applied. Use the
<DataTrigger.Binding> element to specify you are going to be using a
<MultiBinding>. Within the <MultiBinding> element, set the attribute Converter to
the static resource you previously created. Set the ConverterParameter equal to the
value you wish the profit margin to be greater than. In this case, that value is "60".
Next, you use as many <Binding> elements as you need. The Path attribute of each
of these is set to the property to read in the data source. Each of these values is
passed to the values[] array in the converter class. If the value returned from the

The WPF List Box Can Do That?! - Part 3

6 The WPF List Box Can Do That?! - Part 3
Copyright © 2012-2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

converter class matches the "True" value specified, then the background color of
the row is turned to a Gray color as shown in Figure 5.

Figure 3: Pass in multiple data values and get back a single value to display.

Summary
In this blog post you learned to use a data trigger to modify the look and feel of
certain rows based on data from your Product class. You may create one or more
data triggers and each one can modify the look of each row differently. A multi-
binding converter class is used if you need to perform calculations on multiple
pieces of data and use the value returned to modify the look of each row.

Source Code

The WPF List Box Can Do That?! - Part 3 7
Copyright © 2012-2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Source Code
NOTE: You can download the sample code for this article by visiting my website at
http://www.pdsa.com/downloads. Select “Fairway/PDSA Blog”, then select “The
WPF List Box Can Do That?! - Part 3” from the dropdown list.

http://www.pdsa.com/downloads

	The WPF List Box Can Do That?! - Part 3
	Single Data Trigger
	Multiple Data Triggers
	Multiple Pieces of Data as a Trigger
	Summary
	Source Code

