

Add Angular to MVC – Part 4
In this blog post, you will learn to retrieve a single product record using a Web
API call from the Angular product service you created. You are going to add
Edit and Delete buttons to each row of the HTML table (Figure 1) to allow the
user to update and delete an existing product record. For this post, I am
assuming you are a Microsoft Visual Studio developer and are familiar with
MVC, Angular, C#, and the Web API.
Open up the project you created in the last blog post and follow along with the
steps outlined in this one to create the final project.

Figure 1: Edit and delete buttons are added to each row in your product table

Add Angular to MVC

2 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Get a Single Product
When the user clicks on the Edit button next to a specific product in the HTML
table, you should go back to the server to retrieve the full product record for
editing. This ensures you are getting the latest product data.

Add Get to Controller
To get a single product add a Get() method to your ProductApiController
class. This Get() method is different from the other one in this class in that it
accepts a product id of the product you wish to retrieve. Add this method,
shown below to your ProductApiController class.

[HttpGet]
public IHttpActionResult Get(int id) {
 IHttpActionResult ret;
 ProductViewModel vm = new ProductViewModel();

 vm.GetProduct(id);
 if (vm.Entity != null) {
 ret = Ok(vm.Entity);
 }
 else {
 ret = NotFound();
 }

 return ret;
}

Add Get to Angular Product Service
Now that you have the Web API method created, write a getProduct() method
in the ProductService component. Open the product.service.ts file and add
the following method.

getProduct(id: number): Observable<Product> {
 let url = this.url + "/" + id;
 return this.http.get(url)
 .map(response => response.json() as Product)
 .catch(this.handleErrors);
}

This method builds a URL that looks like the following: api/productApi/2. The
number 2 on the end is what gets passed to the id parameter in the Get()
method in your ProductApiController.

Get a Single Product

Add Angular to MVC 3
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

Add Select Button to HTML Table
As you saw in Figure 1, you need to add an “Edit” column to your table. Open
the product-list.component.html file and insert a new <td> element within the
<thead> element.

<td>Edit</td>

Move down to the <tbody> element and insert a new <td> element in the
same position.

<td>
 <button class="btn btn-default btn-sm"
 (click)="selectProduct(product.productId)">
 <i class="glyphicon glyphicon-edit"></i>
 </button>
</td>

Modify Product List Component
The click event on this button is going to call a method named
selectProduct(). You pass in the product id to this method in order to pass this
id to the detail page so it can load the product data associated with that id.
Add the selectProduct() function to the ProductListComponent. This function
is going to call the navigate function and pass that id to the product detail
page.

selectProduct(id: number) {
 this.router.navigate(['/productDetail', id]);
}

Retrieve a Passed Parameter
You are going to need to modify the ngOnInit() method you previously wrote
in the ProductDetailComponent. When you created the add functionality in the
last blog post, you did not do anything with the parameter that was passed
into the ProductDetailComponent. Now, since you are passing an id, you are
going to use that id to call the getProduct method on the product service to
retrieve the product. Open the product-detail.component.ts file and modify the
ngOnInit() function to look like the following.

Add Angular to MVC

4 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

ngOnInit() {
 this.route.params.forEach((params: Params) => {
 if (params['id'] !== undefined) {
 if (params['id'] != "-1") {
 this.productService.getProduct(params['id'])
 .subscribe(product => this.product = product,
 errors => this.handleErrors(errors));
 }
 else {
 this.product = new Product();
 this.product.price = 1;
 this.product.url = "http://www.fairwaytech.com";
 }
 }
 });
}

In the above code you loop through the route.params array and retrieve a
Params object. You check to see if the ‘id’ parameter is defined on that
Params object. If the id value exists, check if that value to see if it is equal to
a -1. If so, then assume you are adding a product. If the value is anything
else, then it is a valid product id. Call the getProduct() method on the product
service to retrieve a single product object.
At this point you can run the application and click on the Edit button. If you did
everything correctly, you should see product data in all the input fields.

Update a Product
Now that you have the current product data displayed in the input fields, the
user may update them. Create the appropriate code to perform the updating
now.

Add PUT Method in Controller
Our first step, of course, is to add a new PUT method in the
ProductApiController class. Open the ProductApiController.cs file and add the
following code.

Update a Product

Add Angular to MVC 5
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

[HttpPut()]
public IHttpActionResult Put(int id, Product product) {
 IHttpActionResult ret = null;
 ProductViewModel vm = new ProductViewModel();

 if (product != null) {
 if (vm.Update(product)) {
 ret = Ok(vm.Entity);
 }
 else {
 if (vm.Messages.Count > 0) {
 ret = BadRequest(
 ConvertMessagesToModelState(vm.Messages));
 }
 else if (vm.LastException != null) {
 ret = InternalServerError(vm.LastException);
 }
 }
 }
 else {
 ret = NotFound();
 }

 return ret;
}

Add updateProduct to Product Service
Add another method to your Angular product service class to call this new
PUT method. Open the product.service.ts file and add the following
updateProduct() method.

updateProduct(product: Product): Observable<Product> {
 let headers = new Headers({ 'Content-Type':
 'application/json' });
 let options = new RequestOptions({ headers: headers });

 return this.http.put(this.url + "/" + product.productId,
 product, options)
 .map(this.extractData)
 .catch(this.handleErrors);
}

When you PUT data, as opposed to getting data, you need to specify the
content type as JSON data. You do this by creating a new Headers object
and setting the ‘Content-Type’ property to ‘application/json’. Create a
RequestOptions object and set the headers property to this new Headers
object you created. Call the put method on the Http service passing in the
product object and the RequestOptions object. When calling a PUT you
specify the URL and you also add on the product id to that URL.

Add Angular to MVC

6 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Modify the updateProduct() Method
In the last blog post you wrote an updateProduct method that was empty. It is
now time to fill in this method. Open the product-detail.component.ts file and
modify the updateProduct method to call the updateProduct method you
created in the product service.

updateProduct(product: Product) {
 this.productService.updateProduct(product)
 .subscribe(() => this.goBack(),
 errors => this.handleErrors(errors));
}

Delete a Product
The last piece of functionality to add to your product page is the ability to
delete product.

Add DELETE to Controller
Add a DELETE method to your ProductApiController to which you pass in the
product id to delete. Open the ProductApiController.cs file and add the Delete
method shown below.

[HttpDelete]
public IHttpActionResult Delete(int id) {
 IHttpActionResult ret;
 ProductViewModel vm = new ProductViewModel();

 if (vm.Delete(id)) {
 ret = Ok(vm.Entity);
 }
 else {
 ret = NotFound();
 }

 return ret;
}

Delete a Product

Add Angular to MVC 7
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

Add deleteProduct to ProductService
Add a method to your Angular product service to call the delete method in
your Web API. Open the product.service.ts file and add the deleteProduct()
method shown below.

deleteProduct(id: number): Observable<Product> {
 return this.http.delete(this.url + "/" + id)
 .map(() => null)
 .catch(this.handleErrors);
}

Add Delete Button to HTML Table
As you saw in Figure 1, you need to add a “Delete” column to your table.
Open the product-list.component.html file and insert a new <td> element
within the <thead> element. Make this the last element in the <thead>
element.

<td>Delete</td>

Add a <td> as the very last element in the <tbody> tag. Add a button with a
click event that calls a method in your ProductListComponent class. Pass the
current product id in the table to this method.

<td>
 <button class="btn btn-default btn-sm"
 (click)="deleteProduct(product.productId)">
 <i class="glyphicon glyphicon-trash"></i>
 </button>
</td>

Add deleteProduct() Method in List Component
Now that you have a button to call a deleteProduct method, go ahead and
add that method. Open the product-list.component.ts file and add the code
shown below.

Add Angular to MVC

8 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

deleteProduct(id: number) {
 if (confirm("Delete this product?")) {
 this.productService.deleteProduct(id)
 .subscribe(() => this.getProducts(),
 errors => this.handleErrors(errors));
 }
}

This method first confirms with the user that they really wish to delete this
product. If they respond affirmatively, the deleteProduct() method on the
Angular product service is called. If the delete is successful, the getProducts
method is called to refresh the collection of products from the server and
redisplay the list of products.

Summary
In this blog post you finished your product page by learning to retrieve, update
and delete an existing product record. In these four blog posts you learned
how to replace a single MVC page with an Angular page. There is no need to
completely rewrite an MVC application. Instead, you can just replace a few
pages that might need the performance of Angular.

Sample Code
You can download the code for this sample at www.pdsa.com/downloads.
Choose the category “PDSA Blogs”, then locate the sample Add Angular to
MVC – Part 4. NOTE: After downloading the sample, you will need to right
mouse click on the package.json file and select the menu “Restore
Packages”. You also need to create the Product table in a SQL Server
database and update the connection string to point to your server and
database name.

http://www.pdsa.com/downloads

	Add Angular to MVC – Part 4
	Get a Single Product
	Add Get to Controller
	Add Get to Angular Product Service
	Add Select Button to HTML Table
	Modify Product List Component
	Retrieve a Passed Parameter

	Update a Product
	Add PUT Method in Controller
	Add updateProduct to Product Service
	Modify the updateProduct() Method

	Delete a Product
	Add DELETE to Controller
	Add deleteProduct to ProductService
	Add Delete Button to HTML Table
	Add deleteProduct() Method in List Component

	Summary
	Sample Code

