

Avoid Hard-Coding in Unit Tests
In my previous blog post, I introduced you to creating unit tests with Visual
Studio. A method named FileExists was created to which you pass a file
name to see if it exists. In the tests you created, you use hard-coded file
names to test. Just as you wouldn’t hard-code values in a normal application,
you should not do this with unit tests either. In this blog post you will learn to
use constants, a configuration file, and how to create and delete test files.
Please go read the previous blog post and create the project, or download the
project at http://www.pdsa.com/downloads and select “Introduction to Unit
Testing” from the list.

Use a Constant
Constants are a great way to centralize hard-coded data that would otherwise
be repeated throughout an application. In this case, you are going to replace
the hard-coded file name used in the FileNameDoesNotExist method with a
constant. At the top of the FileProcessTest class, add the following constant.

private const string BAD_FILE_NAME = @"C:\NotExists.bad";

Modify the FileNameDoesNotExist to use this new constant as shown in the
code snippet below.

http://www.pdsa.com/downloads

Avoid Hard-Coding in Unit Tests

2 Avoid Hard-Coding in Unit Tests
Copyright © 2017 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

public void FileNameDoesNotExist() {
 FileProcess fp = new FileProcess();
 bool fromCall;

 fromCall = fp.FileExists(BAD_FILE_NAME);

 Assert.IsFalse(fromCall);
}

Use a Configuration File
A constant is a good option for the “bad” file name. For the “good” file name
you wish to test to see exists, let’s add that to a configuration file so it can be
modified easily. In fact, let’s add a replaceable token called [AppPath] that will
figure out the appropriate path to use based on the machine the test is
running upon.
Right mouse click on the FileProcessTest project and select Add | New
Item… from the menu. From the template dialog select General |
Application Configuration File. The name should already be set to
App.config, so click on the Add button.
Within the <configuration> element add an <appSettings> section. Within the
<appSettings> section add a key called GoodFileName with a value of
[AppPath]\TestFile.text as shown below.

<appSettings>
 <add key="GoodFileName" value="[AppPath]\TestFile.txt"/>
</appSettings>

In order to retrieve this value from the configuration file, you need to use the
ConfigurationManager class from the System.Configuration namespace. By
default, the System.Configuration DLL is not added to a test project. Right
mouse click on References folder in your FileProcessTest project and select
Add Reference from the menu. From the dialog select Assemblies |
Framework. Locate the System.Configuration dll and select the check box.
Click the OK button to add this DLL to your test project.
At the top of the FileProcessTest class, add a using statement for the
System.Configuration namespace.

 Use a Configuration File

Avoid Hard-Coding in Unit Tests 3
Copyright © 2017 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

using System.Configuration;

Add private field to FileProcessTest class to hold the value you are going to
retrieve from the configuration file. Set the name of this field to
_GoodFileName as shown below.

private string _GoodFileName;

Add a constructor to the FileProcessTest class in which you will read the
GoodFileName value from the configuration file. Within this constructor you
will replace the token [AppPath] with the value from the
Environment.SpecialFolder.ApplicationData. This enumeration, supplied by
.NET, when passed to the GetFolderPath, returns the pre-defined path for
any data you need to store for this application. The location may vary from
OS to OS, but on Windows 10 it is
C:\\Users\\YOUR_USERNAME\\AppData\\Roaming. Write the constructor as
shown below.

public FileProcessTest() {
 _GoodFileName =
 ConfigurationManager.AppSettings["GoodFileName"];
 if (_GoodFileName.Contains("[AppPath]")) {
 _GoodFileName = _GoodFileName.Replace("[AppPath]",
 Environment.GetFolderPath(
 Environment.SpecialFolder.ApplicationData));
 }
}

Locate and modify the FileNameDoesExist method to use this new property
name.

Avoid Hard-Coding in Unit Tests

4 Avoid Hard-Coding in Unit Tests
Copyright © 2017 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

[TestMethod]
public void FileExistsTestTrue() {
 FileProcess fp = new FileProcess();
 bool fromCall;

 fromCall = fp.FileExists(_GoodFileName);
 Assert.AreEqual(true, fromCall);
}

Create / Delete File
Instead of you having to create the file name in the location specified, prior to
running the FileNameDoesExist test, you should create the file name within
the method itself. You should delete the file after you have performed the
FileExists call so you don’t keep files around you don’t need. Modify the
FileNameDoesExist method to look like the following.

[TestMethod]
public void FileNameDoesExist() {
 FileProcess fp = new FileProcess();
 bool fromCall;

 if (!string.IsNullOrEmpty(_GoodFileName)) {
 // Create the 'Good' file.
 File.AppendAllText(_GoodFileName, "Some Text");
 }

 fromCall = fp.FileExists(_GoodFileName);

 // Delete file
 if (File.Exists(_GoodFileName)) {
 File.Delete(_GoodFileName);
 }

 Assert.IsTrue(fromCall);
}

 TestContext

Avoid Hard-Coding in Unit Tests 5
Copyright © 2017 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

TestContext
When the unit test framework creates an instance of a test class (a class
marked with the [TestClass] attribute), the test framework creates a
TestContext object. This object contains properties and methods related to
testing. To access this TestContext object, you must create a public property
named TestContext in each of your test classes. The test framework checks
for this property and inserts the instance of this TestContext into your
property.

private TestContext _TestInstance;
public TestContext TestContext
{
 get { return _TestInstance; }
 set { _TestInstance = value; }
}

One of the things you can do with this TestContext is to use the WriteLine
method to add some output into the test results. Add the lines shown in bold
below to write some messages about what file you are creating into the output
area of the test results.

[TestMethod]
public void FileNameDoesExist() {
 FileProcess fp = new FileProcess();
 bool fromCall;

 if (!string.IsNullOrEmpty(_GoodFileName)) {
 TestContext.WriteLine("Creating file: " + _GoodFileName);
 // Create the 'Good' file.
 File.AppendAllText(_GoodFileName, "Some Text");
 }

 TestContext.WriteLine("Checking file: " + _GoodFileName);
 fromCall = fp.FileExists(_GoodFileName);

 // Delete file
 if (File.Exists(_GoodFileName)) {
 TestContext.WriteLine("Deleting file: " + _GoodFileName);
 File.Delete(_GoodFileName);
 }

 Assert.IsTrue(fromCall);
}

Run this test, once it is complete, click on the FileNameDoesExist test in the
Test Explorer window, locate the Output link at the bottom of the window and

Avoid Hard-Coding in Unit Tests

6 Avoid Hard-Coding in Unit Tests
Copyright © 2017 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

click on it. You should then see your messages appear in an output window
as shown in Figure 1.

Figure 1: Write output messages using the TestContext property

Summary
In this blog post a constant was used in place of a hard-coded file name. You
placed another hard-coded file name into the App.config file in the test
project. Within a test method you created a file, tested that file’s existence,
then deleted the file. This helps keep that method self-contained and avoids
manual setup of files prior to running these tests. Finally, you added a
TestContext property to access the WriteLine method of the TestContext
property. This allows you to add additional messages into the output of the
test results.

 Sample Code

Avoid Hard-Coding in Unit Tests 7
Copyright © 2017 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Sample Code
You can download the code for this sample at www.pdsa.com/downloads.
Choose the category “PDSA Blogs”, then locate the sample Avoid Hard-
Coding in Unit Tests.

http://www.pdsa.com/downloads

	Avoid Hard-Coding in Unit Tests
	Use a Constant
	Use a Configuration File
	Create / Delete File
	TestContext
	Summary
	Sample Code

