

Security in Angular - Part 1

In most business applications, you are going to want to disable, or make
invisible, different features such as menu items, buttons and other UI items,
based on who is logged in and what roles or permissions they have. Angular
does not have anything built-in to help you with this, so you must create it
yourself. There are two different pieces to security you must worry about with
Angular applications. First, you must develop the client-side security, which is
the subject of this article. Second, you must secure your Web API calls, which
will be the subject of another article.

Approaches to Security
There are many different approaches you can take to securing HTML items in
Angular. You can create a simple security object that has one property for
each item in your application you wish to secure as illustrated in Figure 1.
This approach is great for smaller Angular applications as you won't have that
many items to secure. For larger Angular applications, you will want to
employ a claims-based and/or a role-based solution. This first article is going
to focus on the simple security object with one property for each item to
secure. This approach helps you focus on how to accomplish security before
you tackle claims and roles. This article is using mock security objects, so you
don't need to use any Web API calls. You are going to learn to retrieve
security objects from a Web API in the next article.

Security in Angular

2 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 1: Security authentication and authorization using single properties.

Preparing for this Article
To demonstrate how to apply security to an Angular application, I created a
sample application with a few pages to display products, display a single
product, and display a list of product categories. You can download this
sample from http://pdsa.com/downloads. Select "PDSA/Fairway Blog" from
the Category drop-down, then choose "Security in Angular - Part 1".
This article assumes you have the following tools installed.

• Visual Studio Code

• Node

• Node Package Manager (npm)

• Angular CLI

A Look at the Sample Application
In the sample you downloaded, there are two menus, Products and
Categories (Figure 2), that you may wish to turn off based on permissions
assigned to a user. On the product and category list page (Figure 2), you may
want to turn off the Add button based on permissions.

http://pdsa.com/downloads

 Preparing for this Article

Security in Angular 3
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Figure 2: Product list page
On the product detail page (Figure 3), the Save button may be something you
wish to turn off. Perhaps someone can view product detail, but not modify the
data.

Security in Angular

4 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 3: Turn off the Save button based on permissions
Finally, on the Categories page (Figure 4), you may wish to make the Add
New Category button invisible.

 Create User Security Classes

Security in Angular 5
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Figure 4: Turn off the Add New Category button based on permissions

Create User Security Classes
To secure an application, you need a couple of classes to hold user
information. First, you need a user class to hold the user name and password
that can be entered on a login page and verified against some data source. In
the first part of this article, a mock set of logins is used for verification.
Secondly, a user authentication/authorization class is used with properties for
each item in your application you wish to secure.
Next, you need a security service class to authenticate a user and set
properties in the user authentication/authorization object. The property values
determine the permissions the logged in user has. You use the properties to
turn on and off different menus, buttons or other UI elements on your pages.

User Class
Create the user class to hold the user name and password the user types into
a login page. Right mouse-click on the \src\app folder and add a new folder
named security. Right mouse-click on the new security folder and add a file

Security in Angular

6 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

named app-user.ts. Add two properties into this AppUser class as shown in
the following code.

export class AppUser {
 userName: string = "";
 password: string = "";
}

User Authentication/Authorization Class
It is now time to create that class used to turn menus and button off and on.
Right mouse-click on the security folder and add a new file named app-user-
auth.ts. This class contains the username property to hold the user name of
the authenticated user, a bearerToken to be used when interacting with Web
API calls, and a boolean property named isAuthenticated which is only set to
true when a user has been authenticated. The rest of the boolean properties
contained in this class are specific for each menu and button you wish to
secure.

export class AppUserAuth {
 userName: string = "";
 bearerToken: string = "";
 isAuthenticated: boolean = false;
 canAccessProducts: boolean = false;
 canAddProduct: boolean = false;
 canSaveProduct: boolean = false;
 canAccessCategories: boolean = false;
 canAddCategory: boolean = false;
}

Login Mocks
In the first part of this article, you are going to keep all authentication and
authorization local within this Angular application. To do this, create a file with
mock logins. Right mouse-click on the security folder and add a new file
named login-mocks.ts. Create a constant named LOGIN_MOCKS that is an
array of AppUserAuth objects. Create a couple of literal objects to simulate
two different user objects you might retrieve from a database on a backend
server.

 Security Service

Security in Angular 7
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

import { AppUserAuth } from "./app-user-auth";

export const LOGIN_MOCKS: AppUserAuth[] = [
 {
 userName: "PSheriff",
 bearerToken: "abi393kdkd9393ikd",
 isAuthenticated: true,
 canAccessProducts: true,
 canAddProduct: true,
 canSaveProduct: true,
 canAccessCategories: true,
 canAddCategory: false
 },
 {
 userName: "BJones",
 bearerToken: "sd9f923k3kdmcjkhd",
 isAuthenticated: true,
 canAccessProducts: false,
 canAddProduct: false,
 canSaveProduct: false,
 canAccessCategories: true,
 canAddCategory: true
 }
];

Security Service
Angular is all about services, so it makes sense that you should create a
security service class to authenticate a user and return the user's
authorization object with all the appropriate properties set. Open a VS Code
terminal window and type in the following command to generate a service
class named SecurityService. Add the -m option to register this service in
the app.module file.

ng g s security/security --flat

Register this new service with the AppModule class. Open the app.module.ts
file and add a new import.

import { SecurityService }
 from './security/security.service';

Into the providers property, add the SecurityService class.

Security in Angular

8 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

providers: [ProductService, CategoryService, SecurityService],

Open the generated security.service.ts file and add the following import
statements.

import { Observable, of } from 'rxjs';

import { AppUserAuth } from './app-user-auth';
import { AppUser } from './app-user';
import { LOGIN_MOCKS } from './login-mocks';

Add a property to the SecurityService class to hold the user authorization
object. Initialize this object to a new instance of the AppUserAuth class so it
creates the object in memory.

securityObject: AppUserAuth = new AppUserAuth();

Reset Security Object Method
Once you have created this security object, you do not ever want to reset it to
a new object, instead, just change the properties of this object based on a
new user that logs in. Add a method to reset this security object to a default
value.

resetSecurityObject(): void {
 this.securityObject.userName = "";
 this.securityObject.bearerToken = "";
 this.securityObject.isAuthenticated = false;

 this.securityObject.canAccessProducts = false;
 this.securityObject.canAddProduct = false;
 this.securityObject.canSaveProduct = false;
 this.securityObject.canAccessCategories = false;
 this.securityObject.canAddCategory = false;

 localStorage.removeItem("bearerToken");
}

Login Method
Soon, you are going to create a login page. That login component creates an
instance of the AppUser class and binds the properties to input fields on that
page. Once the user has typed in their user name and password, this
instance of the AppUser class is going to be passed to a login() method in the
SecurityService class to determine if the user exists. If the user exists, the

 Security Service

Security in Angular 9
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

appropriate properties are filled into a AppUserAuth object and returned from
the login() method.

login(entity: AppUser): Observable<AppUserAuth> {
 // Initialize security object
 this.resetSecurityObject();

 // Use object assign to update the current object
 // NOTE: Don't create a new AppUserAuth object
 // because that destroys all references to object
 Object.assign(this.securityObject,
 LOGIN_MOCKS.find(user => user.userName.toLowerCase() ===
 entity.userName.toLowerCase()));
 if (this.securityObject.userName !== "") {
 // Store into local storage
 localStorage.setItem("bearerToken",
 this.securityObject.bearerToken);
 }

 return of<AppUserAuth>(this.securityObject);
}

The first thing to do is to reset the security object, so the resetSecurityObject()
is called. Next, you use the Object.assign() method to replace all the
properties in the securityObject property with the properties from the
AppUserAuth object returned from the find() method on the LOGIN_MOCKS
array. If the user is found, the bearer token is stored into local storage. This is
done for when you need to pass this value to the Web API. This article is not
going to cover that, but a future article will.

Logout Method
If you have a login method, you should always have a logout() method. The
logout() method resets the properties in the securityObject property to empty
fields, or false values. By resetting the properties, any bound properties such
as menus, reread those properties and may change their state from visible to
invisible.

Security in Angular

10 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

logout(): void {
 this.resetSecurityObject();
}

Login Page
Now that you have a security service to perform a login, you need to retrieve
a user name and password from the user. Create a Login page by opening a
terminal window and type in the following command to generate a login page.

ng g c security/login --flat

Open the login.component.html file and delete the HTML that was
generated. Create three distinct rows on the new login page.
1. Invalid User Name/Password message.
2. Row to display the instance of the securityObject property.
3. Panel for entering user name and password.
Use Bootstrap styles to create each of these rows on this login page. The first
div contains a *ngIf directive to only display the message if the securityObject
exists, and the isAuthenticated property is false. The second div element
contains a binding to the securityObject property. This object is sent to the
json pipe to display the object as a string within a label element. The last row
is a Bootstrap panel into which you place the appropriate user name and
password input fields.

 Login Page

Security in Angular 11
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

<div class="row">
 <div class="col-xs-12">
 <div class="alert alert-danger"
 *ngIf="securityObject &&
 !securityObject.isAuthenticated">
 <p>Invalid User Name/Password.</p>
 </div>
 </div>
</div>

<!-- TEMPORARY CODE TO VIEW SECURITY OBJECT -->
<div class="row">
 <div class="col-xs-12">
 <label>{{securityObject | json}}</label>
 </div>
</div>

<form>
 <div class="row">
 <div class="col-xs-12 col-sm-6">
 <div class="panel panel-primary">
 <div class="panel-heading">
 <h3 class="panel-title">Log in</h3>
 </div>
 <div class="panel-body">
 <div class="form-group">
 <label for="userName">User Name</label>
 <div class="input-group">
 <input id="userName" name="userName"
 class="form-control" required
 [(ngModel)]="user.userName"
 autofocus="autofocus" />

 <i class="glyphicon glyphicon-envelope"></i>

 </div>
 </div>
 <div class="form-group">
 <label for="password">Password</label>
 <div class="input-group">
 <input id="password" name="password"
 class="form-control" required
 [(ngModel)]="user.password"
 type="password" />

 <i class="glyphicon glyphicon-lock"></i>

 </div>
 </div>
 </div>
 <div class="panel-footer">
 <button class="btn btn-primary" (click)="login()">
 Login
 </button>
 </div>
 </div>

Security in Angular

12 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

 </div>
 </div>
</form>

Modify Login Component TypeScript
As you can see from the HTML you entered into the login.component.html
file, there are two properties required for binding to the HTML elements; user
and securityObject. Open the login.component.ts file and add the following
import statements, or if you wish, use VS Code to insert them for you as you
add each class.

import { AppUser } from './app-user';
import { AppUserAuth } from './app-user-auth';
import { SecurityService } from './security.service';

Add two properties to hold the user and the user authorization object.

user: AppUser = new AppUser();
securityObject: AppUserAuth = null;

To set the securityObject, you need to inject the SecurityService into this
class. Modify the constructor to inject the SecurityService.

constructor(private securityService: SecurityService) { }

The button in the footer area of the Bootstrap panel binds the click event to a
method named login(). Add this login() method as shown below. This method
first removes any previous bearer token that may have been stored in local
storage. The login() method on the SecurityService class is subscribed to,
and the response that is returned is assigned into the securityObject property
defined in this login component.

 Secure Menus

Security in Angular 13
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

login() {
 this.securityService.login(this.user)
 .subscribe(resp => {
 this.securityObject = resp;
 });
}

Secure Menus
Now that you have the login working and a valid security object, you need to
bind this security object to the main menu. The menu system is created in the
app.component.html file, so you need to open that file and add a new menu
item to call the login page. Add the following HTML below the closing
tag used to create the other menus. This HTML creates a right-justified menu
that displays the word "Login" when the user is not yet authenticated. Once
authenticated, the menu changes to Logout <User Name>.

<ul class="nav navbar-nav navbar-right">

 <a routerLink="login"
 *ngIf="!securityObject.isAuthenticated">
 Login

 <a href="#" (onclick)="logout()"
 *ngIf="securityObject.isAuthenticated">
 Logout {{securityObject.userName}}

Just above the code you just added, modify the other two menu items to also
check the security object to determine if they need to be displayed or not. Use
the *ngIf directive to check the securityObject property you are going to add to
the AppComponent class. You check the appropriate boolean properties that
correspond to each menu.

Security in Angular

14 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

 <a routerLink="/products"
 *ngIf="securityObject.canAccessProducts">Products

 <a routerLink="/categories"
 *ngIf="securityObject.canAccessCategories">Categories

Modify the AppComponent Class
As you saw from the HTML you entered, you need to add the securityObject
to the component associated with the app. Open the app.component.ts file
and add the securityObject property. You do need to set it equal to a null
value to start with so the Invalid User Name/Password message does not
show.

securityObject: AppUserAuth = null;

Modify the constructor of the AppComponent class to inject the
SecurityService and assign the securityObject property to the property you
just created.

constructor(private securityService: SecurityService) {
 this.securityObject = securityService.securityObject;
}

Add a logout() method to this class that calls the logout() method on the
security service class. This method is bound to the click event on the Logout
menu item you added in the HTML.

logout(): void {
 this.securityService.logout();
}

Add Login Route
To get to the login page, you need to add a route. Open the app-
routing.module.ts file and add a new route like the one shown below.

 Secure Buttons

Security in Angular 15
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

{
 path: 'login',
 component: LoginComponent
},

Try it Out
Save all the changes you have made so far. Start the application using npm
start. Click the Login menu and login with "psheriff" and notice the properties
that are set in the returned security object. Click the logout button, then login
back in as "bjones" and notice that different properties are set, and the
Product link goes away. This is because the canAccessProducts property in
the LOGIN_MOCKS array for BJones is set to false.
Open up the logins-mock.ts file and set the canAccessProducts property to
true for the BJones object.

{
 userName: "BJones",
 bearerToken: "sd9f923k3kdmcjkhd",
 isAuthenticated: true,
 canAccessProducts: true,
 canAddProduct: false,
 canSaveProduct: false,
 canAccessCategories: true,
 canAddCategory: true
}

You are going to try out some of the different authorization properties and this
needs to be set to true to try them out.

Secure Buttons
Besides the permissions you added to the menus, you also might want to
apply the same to buttons that perform actions. For example, adding a new
product or category. Or, saving product data. For this article, you are only
learning how to hide HTML elements. If there were Web API method calls
behind these buttons, those are not being secured here. You need to secure
the Web API using some sort of token system. Those techniques will be
covered in a future article.

Security in Angular

16 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Let's secure the Add New Product button by using the security object created
after logging in. Open the product-list.component.html file and modify the
Add New Product button to look like the following:

<button class="btn btn-primary"
 (click)="addProduct()"
 *ngIf="securityObject.canAddProduct">
 Add New Product
</button>

Open the product-list.component.ts file and add a property named
securityObject that is of the type AppUserAuth. You are going to want to add
this same property to any component you wish to use security upon.

securityObject: AppUserAuth = null;

Assign the securityObject property you just created to the securityObject
property in the SecurityService class. Inject the service in the constructor and
retrieve the security object. You are going to want to use this same design
pattern in any component you wish to secure.

constructor(private productService: ProductService,
 private router: Router,
 private securityService: SecurityService) {
 this.securityObject = securityService.securityObject;
}

Open the product-detail.component.html file and modify the Save button to
use the canSaveProduct property on the securityObject. The *ngIf directive
will cause the button to disappear if the canSaveProduct property is false.

<button class="btn btn-primary"
 (click)="saveData()"
 *ngIf="securityObject.canSaveProduct">
 Save
</button>

Open the product-detail.component.ts file and add the securityObject
property, just like you did in the product-list.component.ts file.

securityObject: AppUserAuth = null;

Modify the constructor to inject the SecurityService and to assign the
securityObject property from the SecurityService to the securityObject
property you just created in this class.

 Secure Buttons

Security in Angular 17
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

constructor(private categoryService: CategoryService,
 private productService: ProductService,
 private route: ActivatedRoute,
 private location: Location,
 private securityService: SecurityService) {
 this.securityObject = securityService.securityObject;
}

Open the category-list.component.html file and modify the Add New
Category button to use the canAddCategory property on the securityObject.

<button class="btn btn-primary"
 (onclick)="addCategory()"
 *ngIf="securityObject.canAddCategory">
 Add New Category
</button>

Open the category-list.component.ts file and add the securityObject
property.

securityObject: AppUserAuth = null;

Modify the constructor to inject the SecurityService and to assign the
securityObject property from the SecurityService to the securityObject
property you just created in this class.

constructor(private categoryService: CategoryService,
 private securityService: SecurityService) {
 this.securityObject = securityService.securityObject;
}

Try it Out
Save all the changes you have made and go to your browser. Click the Login
menu and login with "psheriff" and notice the properties that are set in the
returned security object.
Open the Products page and you can click on the Add New Product button. If
you click on an Edit button next to one of the products, you can see the Save
button on the product detail page. Open the Category page and notice that
the Add New Category button is not visible to you.
Click the logout button and login as "bjones". Notice that different properties
are set on the security object.

Security in Angular

18 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Open the Products page and notice you the Add New Product button is not
visible. If you click on an Edit button next to one of the products, the Save
button on the product detail page is not visible to you. Open the Category
page and notice that the Add New Category button is visible.

Secure Routes Using a Guard
Even though you can control the visibility of menu items, just because you
can't click on them doesn't mean you can't get to the route. You can type the
route directly into the browser address bar and you can get to the products
page even if you don't have the canAccessProducts property set to true.
To protect the route, you need to build a Route Guard. A Route Guard is a
special class in Angular to determine if a page can be activated, or even
deactivated. Let's learn how to build a CanActivate guard. Open a terminal
and create a new guard named AuthGuard.

ng g g security/auth --flat

Register this new guard with the AppModule class. Open the app.module.ts
file and add a new import.

import { AuthGuard } from './security/auth.guard';

Into the providers property, add the AuthGuard class.

providers: [ProductService, CategoryService,
 SecurityService, AuthGuard],

To protect a route, open the app-routing.module.ts file and add the
canActivate property to those paths you wish to secure. You pass one or
many guards to this property. In this case, add the AuthGuard class to the
array of guards. For each route you also need to specify the name of the
property to check on the security object that is associated with this route. Add
a data property and pass in a property named claimType and set the value of
that property to the name of the property associated with the route. This data
property is passed to each Guard listed in the canActivate property.

 Secure Routes Using a Guard

Security in Angular 19
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

{
 path: 'products',
 component: ProductListComponent,
 canActivate: [AuthGuard],
 data: {claimType: 'canAccessProducts'}
},
{
 path: 'productDetail/:id',
 component: ProductDetailComponent,
 canActivate: [AuthGuard],
 data: {claimType: 'canAccessProducts'}
},
{
 path: 'categories',
 component: CategoryListComponent,
 canActivate: [AuthGuard],
 data: {claimType: 'canAccessCategories'}
},

Authorization Guard
Let's write the appropriate code in the AuthGuard to secure the route. Since
you are going to need to access the property passed in via the data property,
open the auth-guard.ts file and add a constructor to inject the
SecurityService.

constructor(private securityService: SecurityService) { }

Modify the canActivate() method to retrieve the claimType property in the data
property. Remove the "return true" statement and add the following lines of
code in its place.

canActivate(
 next: ActivatedRouteSnapshot,
 state: RouterStateSnapshot): Observable<boolean>
 | Promise<boolean> | boolean {
 // Get property name on security object to check
 let claimType: string = next.data["claimType"];

 return this.securityService.securityObject.isAuthenticated
 && this.securityService.securityObject[claimType];
}

Retrieve the property name to check on the security object using the next
parameter. This property is an ActivatedRouteSnapshot and contains the data
object passed via the route you created earlier. A true value returned from
this guard means that the user has the right to navigate to this route. Check to

Security in Angular

20 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

ensure that the isAuthenticated property on the securityObject is a true value
and that the property name passed in the data object is also a true value.

Try it Out
Save all the changes you have made and go to the browser and type directly
into the browser address bar http://localhost:4200/products. If you are not
logged in, you are not able to get to the products page. Your guard is working;
however, it ends up displaying a blank page. It would be better to redirect to
the login page.

Redirect to Login Page
To redirect to the login page, modify the AuthGuard class to perform the
redirection if the user is not authorized for the current route. Open the auth-
guard.ts file and inject the Router service into the constructor.

constructor(private securityService: SecurityService,
 private router: Router) { }

Modify the canActivate() method. Remove the current return statement and
replace it with the following lines of code.

if (this.securityService.securityObject.isAuthenticated
 && this.securityService.securityObject[claimType]) {
 return true;
}
else {
 this.router.navigate(['login'],
 { queryParams: { returnUrl: state.url } });
 return false;
}

If the user is authenticated and authorized, the Guard returns a true and
Angular goes to the route. Otherwise, use the Router object to navigate to the
login page. Pass the current route the user was attempting to get to as a
query parameter. This places the route on the address bar for the login
component to retrieve and use to go to the route requested after a valid login.

http://localhost:4200/products

 Redirect Back to Requested Page

Security in Angular 21
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Try it Out
Save all your changes, go to the browser, and type directly into the browser
address bar http://localhost:4200/products. The page will reset, and you will
be directed to the login page. You should see a returnUrl parameter in the
address bar. You can login, but you won't be redirected to the products page,
you need to add some code to the login component.

Redirect Back to Requested Page
If the user logs in with the appropriate credentials that allows them to get to
the requested page, then you want to direct them to that page after login. The
LoginComponent class should return the returnUrl query parameter and
attempt to navigate to that route after successful login. Open the
login.component.ts file and inject the ActivatedRoute and the Router objects
into the constructor.

constructor(private securityService: SecurityService,
 private route: ActivatedRoute,
 private router: Router) { }

Add a property to this class to hold the return url if any is retrieved from the
address bar.

returnUrl: string;

Add a line to the ngOnInit() method to retrieve this returnUrl query parameter.
If you click on the Login menu directly, the queryParamMap.get() method
returns a null.

ngOnInit() {
 this.returnUrl =
 this.route.snapshot.queryParamMap.get('returnUrl');
}

Locate the login() method and add code after setting the securityObject to test
for a valid url and to redirect to that route if there is one.

http://localhost:4200/products

Security in Angular

22 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

login() {
 localStorage.removeItem("bearerToken");

 this.securityService.login(this.user)
 .subscribe(resp => {
 this.securityObject = resp;
 if (this.returnUrl) {
 this.router.navigateByUrl(this.returnUrl);
 }
 });
}

Try it Out
Save all your changes, go to the browser, and type directly into the browser
address bar http://localhost:4200/products and you will be directed to login
page. Login as "psheriff" and you are redirected to the products list page.

Summary
In this article you learned to add client-side security to your Angular
applications. Using a class with properties to represent each "permission" you
want to grant to each user, makes securing menu links and buttons easy.
Apply Route Guards to your routes to ensure no one can get to a page by
typing directly into the address bar. One thing you can do instead of adding
the securityObject property to each component, is create a custom directive
to which you pass the permission you want to check.
Everything was done client-side in this article; however, you can authenticate
users, and return a security authorization object using a Web API call. The
techniques in this article do not address securing your Web API methods. We
will look at how to do this in a future article.

Final Sample Code
You can download the complete sample code at my website.
http://www.pdsa.com/downloads. Choose "PDSA/Fairway Blog", then
"Security in Angular - Part 1 - Finished" from the drop-down.

http://localhost:4200/products
http://www.pdsa.com/downloads

	Security in Angular - Part 1
	Approaches to Security
	Preparing for this Article
	A Look at the Sample Application

	Create User Security Classes
	User Class
	User Authentication/Authorization Class
	Login Mocks

	Security Service
	Reset Security Object Method
	Login Method
	Logout Method

	Login Page
	Modify Login Component TypeScript

	Secure Menus
	Modify the AppComponent Class
	Add Login Route
	Try it Out

	Secure Buttons
	Try it Out

	Secure Routes Using a Guard
	Authorization Guard
	Try it Out

	Redirect to Login Page
	Try it Out

	Redirect Back to Requested Page
	Try it Out

	Summary
	Final Sample Code

