Apply Angular Techniques to jQuery
Applications — Part 2

In the last blog post you learned how to structure your jQuery applications like
Angular applications. You created a single page on which to host all your
other pages. In this post you are going to put those techniques to work by
building a complete list, add, edit and delete page as shown in Figure 1 and
Figure 2. You are going to use a Person table full of data such as First Name,
Last Name, Email and Salary data for a set of people.

- O X
e & http://localhost:65472/sample-06/samplelf.html ~ & | | Search.., 2~
(= Person List LT | e

Home Person List

Person List

Edit PersonID  First Name Last Name Email Salary Delete
G 1 Paul Shaefer Pauls@netinc.com $100,000.00 ﬂ
G 2 Michael Kawoski Michaelk@netinc.com $150,000.00 ﬂ
G 3 Sara Winchell Saraw@netinc.com $12122.00 ﬂ
G 4 John Kroon Johnk@netinc.com $90,000.00 ﬂ
G 5 Tim Nicker Timn@netinc.com $88,000.00 ﬂ
G 6 Russ Martlog Russmi@netinc.com 589,000.00 ﬂ
G 8 James Birdy Jamesb@netinc.com $45,000.00 ﬂ

Figure 1: Person List Page



Apply Angular Techniques to jQuery Applications - Part 2

— O >
e & http://localhost:65472/sample-06/sampledb.html + & | | Search... P~
2 undefined L] 'é'

Person Information

Person ID

2

First Name

Michael

Last Name

Kawoski

Email

Michaelk@netinc.com

Start Date

1999-08-22T00:00:00

Salary
150000

Save

Figure 2: Person Detail Page

Create Server-Side Code

There are several pieces you need to create on the server-side to prepare for
calling a Web API from your client-side jQuery CRUD page. You need to do
the following.

1. Create a person table
2. Create a web project in Visual Studio 2017
3. Create Entity Framework classes to access your person table

2 Apply Angular Techniques to jQuery Applications - Part 2
Copyright © 2017 by Paul D. Sheriff
All rights reserved worldwide. Reproduction is strictly prohibited.



Create Server-Side Code

4. Create base Web API controller class
5. Create Person Web API controller
6. Change JSON formatter to return camel-case property names

Person Table

To have some data for this page, create a table in a SQL Server database.
Below is the script to create the Person table.

CREATE TABLE Person (

PersonId int PRIMARY KEY NONCLUSTERED
IDENTITY (1,1) NOT NULL,

FirstName varchar (50) NOT NULL,
LastName varchar (50) NOT NULL,
EmailAddress varchar (250) NULL,

StartDate datetime NULL,

Salary money NULL

)7

Once you have this table created, add some data. You may download the
samples for this blog post and use the Person.sql script provided to create
this table and the data. See the Summary section at the end of this blog post
for information on how to download the sample.

Web Project

For this blog post, | am going build the sample project using Visual Studio
2017. Start Visual Studio 2017 and select File | New | Project... from the
menu system. From the New Project dialog, select Visual C# | Web |
ASP.NET Web Application (.NET Framework). Set the Name to
jQueryCRUD and click the OK button. On the New ASP.NET Web
Application dialog, select the Web API template and click the OK button to
create your web project.

After the project has been created, right mouse-click on the project and select
Manage NuGet Packages... from the context-sensitive menu. Click on the
Updates tab and if there are any updates, select all packages and update all
of them.

Entity Framework Classes

You need a data layer to be able to retrieve and modify the data in the Person
table. Use the Entity Framework code generator that is built-into Visual Studio

Apply Angular Techniques to jQuery Applications - Part 2 3
Copyright © 2017 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.



Apply Angular Techniques to jQuery Applications - Part 2

to create this data layer. This code generator generates code to allow us to
retrieve, add, edit and delete data within the Person table.

Right mouse-click on the \Models folder and select Add | New Item... Click
on the Data node, then select ADO.NET Entity Data Model from the list of
templates. When prompted for the item name, type in PersonDB. Click the
Add button to move to the next step in this process

Select Code First from database and click the Next button to create a server
connection. Create a new connection to the database where you installed the
Person table. After creating the connection, leave everything else the same in
this step of the wizard and click the Next button.

Expand the tree view and locate the Person table you previously created.
Click the Finish button to have Visual Studio create the Entity Framework
data model for the Person table.

Base Web API Controller Class

All Web API controllers you create in Visual Studio inherit from the
ApiController class. It is a good practice to create your own base class that
inherits from ApiController, then have all your Web API controllers inherit from
your base class. By doing this, you can add methods and properties to your
base controller class that you can use among all your Web API controllers.

Add a new folder named \Components to your project. Right mouse-click on
the Components folder and add a new class called BaseApiController. Into
this new class you are going to add two new methods. The first method is
going to help each controller deal with exceptions. The second method is
going to convert any validation exceptions returned from the Entity
Framework into a ModelStateDictionary to be returned to the client
application. Add some using statements to the top of this new class.

using System;

using System.Data.Entity.Validation;
using System.Diagnostics;

using System.Web.Http;

using System.Web.Http.ModelBinding;

Write the rest of the BaseApiController class by typing in the following code:

4 Apply Angular Techniques to jQuery Applications - Part 2
Copyright © 2017 by Paul D. Sheriff
All rights reserved worldwide. Reproduction is strictly prohibited.



Create Server-Side Code

public class BaseApiController : ApiController
{
protected IHttpActionResult HandleException (Exception ex,
string msg) {
IHttpActionResult ret;

// TODO: Add exception publishing here
Debug.Writeline (ex.ToString());

// Create new exception with generic message
ret = InternalServerError (new Exception (msg, ex));

return ret;

}

protected ModelStateDictionary
ConvertToModelState (DbEntityValidationException ex)
{

ModelStateDictionary ret = new ModelStateDictionary();

foreach (var list in ex.EntityValidationErrors) {
foreach (var item in list.ValidationErrors) {
ret.AddModelError (item.PropertyName,
item.ErrorMessage) ;
}
}

return ret;

The HandleException method is used in the catch block of any method in
your controllers. If an exception, other than a validation exception, is raised by
code in your method, you pass the exception object to this method. It creates
a status code of 500 by returning an IHttpActionResult created from the
InternalServerError() method.

The method ConvertToModelState is used when you attempt to add, or
update a person and a business rule fails. The Entity Framework raises a
DbEntityValidationException exception when business rules fail. You are
going to pass that exception object to this method. The validation errors in
this exception are extracted and bundled into a ModelStateDictionary object.
This dictionary object is passed back to the client by returning the
BadRequest method with the dictionary object as the payload.

Person Controller Class

Open the Controllers folder and delete the ValuesController.cs file. This is just
a sample and is not needed. Right mouse-click on the Controllers folder and
select Add | Web API Controller Class (v2.1) from the menu. Set the name

Apply Angular Techniques to jQuery Applications - Part 2 5
Copyright © 2017 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.



Apply Angular Techniques to jQuery Applications - Part 2

to PersonController and click the OK button. Add a few using statements at
the top of this file.

using System;

using System.Data.Entity.Validation;
using System.Ling;

using System.Web.Http;

using jQueryCRUD.Components;

using jQueryCRUD.Models;

Delete all the code within this new controller class as you are going to write
your Web API methods using a more updated approach than what is
generated by Visual Studio. There are five methods you are going to add to
this controller; Get(), Get(id), Post(), Put() and Delete(). Modify the
PersonController class to inherit from BaseApiController instead of
ApiController.

The code in each of these methods has some commonalities. Each defines
an instance of a PersonDB object and creates a new instance of that object
within a try...catch block. The catch block calls the HandleException() method
you previously defined within the BaseApiController.

The Get() and Get(id) methods return an Ok() or a NotFound() status
depending on whether or not they found any data. The Put() and Post()
methods can return a BadRequest() if a null person object is passed in, or if
validation exceptions are generated from the Entity Framework. The complete
PersonController class is presented below.

6 Apply Angular Techniques to jQuery Applications - Part 2
Copyright © 2017 by Paul D. Sheriff
All rights reserved worldwide. Reproduction is strictly prohibited.



Create Server-Side Code

[RoutePrefix ("api/Person") ]
public class PersonController : BaseApiController
{
[HttpGet () ]
public IHttpActionResult Get ()
{
PersonDB db = null;
IHttpActionResult ret = null;

try {
db = new PersonDB();

if (db.People.Count () > 0) {
ret = Ok (db.People);
}
else {
ret = NotFound() ;
}
}
catch (Exception ex) {
ret = HandleException (ex,
"Error attempting to retrieve a list of persons");

}

return ret;

}

[HttpGet () ]

public IHttpActionResult Get (int id)

{
PersonDB db = null;
IHttpActionResult ret = null;
Person person = null;

try {
db = new PersonDB();

person = db.People.Find(id);
if (person != null) {
ret = Ok (person);
}
else {
ret = NotFound() ;
}
}
catch (Exception ex) {
ret = HandleException (ex,
"Error attempting to retrieve a single person");

}

return ret;

}

[HttpPost () ]
public IHttpActionResult Post ([FromBody]Person person)
{

Apply Angular Techniques to jQuery Applications - Part 2 7
Copyright © 2017 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.



Apply Angular Techniques to jQuery Applications - Part 2

PersonDB db = null;
IHttpActionResult ret = null;

try {
db = new PersonDB();

if (person != null) {
db.People.Add (person) ;
db.SaveChanges () ;
ret = Created<Person> (Request.RequestUri +
person.PersonId.ToString(),
person) ;
}
else {
ret = BadRequest (
"Invalid person object passed to POST method");
}

}
catch (DbEntityValidationException ex) {

ret = BadRequest (ConvertToModelState (ex)) ;
}
catch (Exception ex) {
ret = HandleException (ex,
"Error attempting to insert person data");

}

return ret;

}

[HttpPut () ]
public IHttpActionResult Put ([FromBody]Person person)
{

PersonDB db = null;

IHttpActionResult ret = null;

try {
db = new PersonDB();

if (person != null) {
db.Entry (person) .State =
System.Data.Entity.EntityState.Modified;
db.SaveChanges () ;
ret = Ok (person);
}
else {
ret = BadRequest (
"Invalid person object passed to PUT method");
}
}
catch (DbEntityValidationException ex) {
ret = BadRequest (ConvertToModelState (ex)) ;
}
catch (Exception ex) {
ret = HandleException (ex,
"Error attempting to update person data");

8 Apply Angular Techniques to jQuery Applications - Part 2
Copyright © 2017 by Paul D. Sheriff
All rights reserved worldwide. Reproduction is strictly prohibited.



Create Server-Side Code

return ret;

}

[HttpDelete () ]
public IHttpActionResult Delete(int id)

{
PersonDB db = null;

IHttpActionResult ret = null;
Person person = null;

try {
db = new PersonDB();

person = db.People.Find(id);

if (person != null) {
db.People.Remove (person) ;
db.SaveChanges () ;

}
ret = Ok(true);

}
catch (Exception ex) {
ret = HandleException (ex,
"Error attempting to delete person data");

}

return ret;

Camel-Case Property Names

C# property names are generated from the Entity Framework using
PascalCase. However, JavaScript programmers are used to camelCase
property names. You can have .NET automatically convert the C# property
names to camelCase by adding a little bit of code in the Register() method in
the WebApiConfig class. Open the \App_Start\WebApiConfig.cs file and make
sure you have the following using statements at the top of this file.

using System.Ling;

using System.Net.Http.Formatting;
using System.Web.Http;

using Newtonsoft.Json.Serialization;

At the bottom of the Register() method, add the following code to perform the
camel-case conversion.

Apply Angular Techniques to jQuery Applications - Part 2 9
Copyright © 2017 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.



Apply Angular Techniques to jQuery Applications - Part 2

// Make return results camel case
var jsonFormatter =
config.Formatters.OfType<dsonMediaTypeFormatter> ()
.FirstOrDefault (),

jsonFormatter.SerializerSettings.
ContractResolver = new
CamelCasePropertyNamesContractResolver () ;

The above code queries the Formatters collection and retrieves the first
instance of a JsonMediaTypeFormatter object it finds. Into the
SerializerSettings.ContractResolver property create a new instance of a
CamelCasePropertyNamesContractResolver. This property controls how the
JSON objects are formatted and sent to the client-side caller.

Display a List of Person Data

If you have not already done so, please read the first part of this blog post.
Or, at least download the sample from that blog post as you need the code
from that post to continue. You can get the samples at
www.pdsa.com/downloads. Choose “PDSA Blogs” from the Category, then
select “Apply Angular Techniques to jQuery Applications — Part 17.

With the server-side code in place, you are now ready to create the HTML
and the JavaScript/jQuery for the client-side code. To do this, you are going
to perform a few tasks.

1. Copy files from previous blog post

Create a person.service.js file to call the Web API

Add mustache.js (or any templating framework) to your project
Create a person.list.html file to list all persons

A Sl

Create a person.list.js file to call the person service and load the list of
persons into an HTML table

o

Create a person.detail.html file to allow for inputting person information
7. Create a person.detail.js file to retrieve, add, and edit person data

Copy Files from Previous Post

Locate the \src folder in the samples from the previous blog post and copy the
complete folder into your Visual Studio project. Copy the spa-common.js file

10

Apply Angular Techniques to jQuery Applications - Part 2
Copyright © 2017 by Paul D. Sheriff
All rights reserved worldwide. Reproduction is strictly prohibited.


http://www.pdsa.com/downloads

Display a List of Person Data

from the \scripts folder and paste it into the \Scripts folder of your project.
Right mouse-click on the \src\index.html file and choose Set As Start Page
from the context-sensitive menu. Run the project and make sure your
index.html page loads correctly.

Add Mustache.js to your Project

Instead of writing a bunch of code in JavaScript to load the person table, let’s
use a templating framework to build the table. There are many different
templating frameworks you can utilize. | am going to use Mustache.js
(https://github.com/janl/mustache.js/) for this article. Feel free to substitute
your favorite templating framework. Open the NuGet Package Manager in
your Visual Studio project and search for Mustache.js as shown in Figure 3.
Install mustache into your project.

NuGet: jQueryCRUD R X
Installed  Updates NuGet Package Manager: jQueryCRUD

P g
mustache T © D Include prerelease Package source: nuget.org * o

ﬁ| mustache.js

LI'.I Mustache bytr
=" Animplementation of Mustache in .
Version: Latest stable 0.7.2 ~

NLog.Mustache by Mike O'Brien, 3.28K dow

NLog Mustache Layout Renderer. v ) Options

Mustache.PCL by Daniele Scipioni, 59 5 Description
MET Partable Class Library implementation of Mustache logic-less Logic-less templates in JavaScript.
templates

Version: 0.7.2
mustache.js by Jan Lehnardt, 79.3K downloads Author(s): Jan Lehnardt
For more information, see
https://github.com/janl/mustache.js

License:

Figure 3: Add mustache.js to your project

Add a link on the index.html page to the \Scripts\mustache.js file.

<script src="../Scripts/mustache.js"></script>

Create Person Service Closure

Let’s start building our person files. Right mouse-click on the \src folder and
add a new folder called \person. Add a new JavaScript file named
person.service.js. Add a closure and assign it to a variable called
personService. In this closure you are going to add all the methods required

Apply Angular Techniques to jQuery Applications - Part 2 11
Copyright © 2017 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.



Apply Angular Techniques to jQuery Applications - Part 2

to retrieve all persons, get a single person, insert, update and delete a
person, by calling the Person Web API you created earlier in this post.

Start by creating a method named getAll(). This method makes an ajax call to
the Get() method in your Web API controller. To this method you pass two
callback functions. The first function is called when person data is
successfully retrieved from the ajax call. The second function is called when
an exception occurs.

var personService = (function () {
const API URL = "/api/Person/";

function getAll (success, failure) {
// Get a list of data
$S.ajax ({
url: API URL,
type: 'GET',
dataType: 'Json'
})
.done (function (data) {
success (data) ;

})
.fail (function (error) {
if (failure) {
failure (error);
}
else {
console.error ("Error Occurred: " + error);

1)
}

// Public Functions
return {
getAll: function (success, failure) {
getAll (success, failure);

}

IDNON

Add a link on the index.html page to the person.service.js file.

<script src="person/person.service.]js"></script>

Create Person List HTML

Create a person.list.html file in the \person folder and add the appropriate
HTML to build a person table. Leave the <tbody> element blank. This will be
filled in by using the template defined in the <script> tag with the id of
“‘dataTmpl”.

12 Apply Angular Techniques to jQuery Applications - Part 2
Copyright © 2017 by Paul D. Sheriff
All rights reserved worldwide. Reproduction is strictly prohibited.



Display a List of Person Data

<div class="row">
<div class="col-xs-12">
<hl>Person List</hl>
</div>
</div>

<div class="row">
<div class="col-xs-12">
<table id="people"
class="table table-bordered
table-condensed table-striped">
<thead>
<tr>
<th>Person ID</th>
<th>First Name</th>
<th>Last Name</th>
<th>Email</th>
<th class="text-right">Salary</th>
</tr>
</thead>
<tbody></tbody>
</table>
</div>
</div>

<script src="./person/person.list.js"></script>
<script id="dataTmpl" type="text/html">
{{#dataCollection}}
<tr>
<td>{{personlId}}</td>
<td>{{firstName} }</td>
<td>{{lastName}}</td>
<td>{{emailAddress}}</td>
<td class="text-right">{{salaryAsCurrency}}</td>
</tr>
{{/dataCollection}}
</script>

Create Person List Closure

Now that you have the HTML for displaying a person table, build a person list
closure to call the person service, and have mustache render the table. This
person list closure contains methods to make the calls and render the data
using mustache. Add a new JavaScript file named person.list.js to the
\person folder. Add the following code in this file.

Apply Angular Techniques to jQuery Applications - Part 2 13
Copyright © 2017 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.



Apply Angular Techniques to jQuery Applications - Part 2

$ (document) .ready (function () {
personListComponent.getAll () ;
1)

// Closure for Person List Page
var personListComponent = (function () {
// Private Variables
var vm = {
people: []
}s

// Private Functions
function renderData (templateId, insertInto) {
// Get template from script element
var template = $(templateId).html();
// Call Mustache passing in the template and the
// object with collection of data to display
var html = Mustache.to html (template,
personlListComponent) ;
// Insert the rendered HTML into the DOM
S (insertInto) .html (html) ;
}

// Callback function from Service
function getAllSuccess (data) {

// Assign data to array

vm.people = data;

// Create HTML table

renderData ("#dataTmpl", "#people tbody");
}

function getAll () {
// Call Service to get list of data
personService.getAll (getAllSuccess);

}

// Public Functions

return {
getAll: function () {
getAll ()
by
salaryAsCurrency: function () {

return new Number (this.salary)
.toLocaleString('en-US"',
{ style: 'currency', currency: 'USD' });
b
dataCollection: function () {
return vm.people;

}
}I
IDNON

Add a new menu item to the index.html page to call the person list page.

14 Apply Angular Techniques to jQuery Applications - Part 2
Copyright © 2017 by Paul D. Sheriff
All rights reserved worldwide. Reproduction is strictly prohibited.



Display a Single Person

<a href="{#person.list"
data-page-path="person/"
title="Person List">
Person List

</a>

Run the page and you should see your list of persons in the HTML table.

Display a Single Person

Create a new HTML page to display each of the columns in the Person table.
You are going to use this page to add and edit the person data. Right mouse-
click on the \person folder and create a new HTML page named
person.detail.html. Make this HTML page look like the code below.

Apply Angular Techniques to jQuery Applications - Part 2 15
Copyright © 2017 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.



Apply Angular Techniques to jQuery Applications - Part 2

<div class="row">
<div class="col-sm-6">
<div class="panel panel-primary">
<div class="panel-heading">
Person Information
</div>
<div class="panel-body">
<div class="form-group">
<label for="personId">
Person ID
</label>
<input type="number" id="personId"
readonly="readonly"
class="form-control" />
</div>
<div class="form-group">
<label for="firstName">
First Name
</label>
<input type="text" id="firstName"
class="form-control" />
</div>
<div class="form-group">
<label for="lastName">
Last Name
</label>
<input type="text" id="lastName"
class="form-control" />
</div>
<div class="form-group">
<label for="emailAddress">Email</label>
<input type="email" id="emailAddress"
class="form-control" />
</div>
<div class="form-group">
<label for="startDate">Start Date</label>
<input type="date" id="startDate"
class="form-control" />
</div>
<div class="form-group">
<label for="salary">Salary</label>
<input type="number" id="salary"
class="form-control" />

</div>
</div>
</div>
</div>
</div>
<script src="./person/person.detail.js"></script>
16 Apply Angular Techniques to jQuery Applications - Part 2

Copyright © 2017 by Paul D. Sheriff
All rights reserved worldwide. Reproduction is strictly prohibited.



Display a Single Person

Create Person Detail Closure

Add a JavaScript file to the \person folder named person.detail.js. This is the
closure with all the code for displaying the person data on the
person.detail.html page.

Apply Angular Techniques to jQuery Applications - Part 2 17
Copyright © 2017 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.



Apply Angular Techniques to jQuery Applications - Part 2

$ (document) .ready (function () {
personDetailComponent.get () ;
1)

// Closure for person.detail page
var personDetailComponent = (function () {
// Private Variables
var vm = {
person: {}
bi

// Private Functions

function getSuccess (data) {
// Assign data to object
vm.person = data;
// Display fields in HTML inputs
displayData (vm.person) ;

}

function get () {
// Assuming the following url: #product.detail/n
var id = window.location.hash;
if (id.lastIndexOf("/™) >= 0) {
// Extract the ID portion from the hash
id = id.substring (id.lastIndexOf ("/"™) + 1);
}
else
id
}

—_—

null;

if (id) |
// Call Service to get data
personService.getPerson(id, getSuccess);
}
}

function displayData (person) {
S ("#personId") .val (person.personld) ;
S("#firstName") .val (person.firstName) ;
S("#lastName") .val (person.lastName) ;
$ ("#emailAddress") .val (person.emailAddress) ;
S ("#startDate") .val (person.startDate) ;
$("#salary") .val (person.salary);

}

// Public Functions
return {
get: function () {
get();

Add Button to Call Person Detail

18 Apply Angular Techniques to jQuery Applications - Part 2
Copyright © 2017 by Paul D. Sheriff
All rights reserved worldwide. Reproduction is strictly prohibited.




Display a Single Person

To get to the person detail page, you need to add a button to the HTML table
you created on the person list page. Open the person.list.html page and add
a new table header.

<th>Edit</th>

In the mustache template add a new <td> with an anchor tag that calls the
person.detail page you just added.

<td>
<a href="#person.detail/{{personId}}"
data-page-path="./person/"
title="Person Information"
class="btn btn-default'>
<span class='glyphicon glyphicon-edit' />
</a>
</td>

One thing that was not accounted for in the previous blog post, was a forward
slash after the page name in the href attribute. You added a person id after
the page name of person.detail in the href. In order to get the page name, you
must remove the forward slash and anything after it in order to get just page
name. Open the spa-common.js file and locate the changePage() method.
After the line of code that removes the # sign to create the page name, add
code to remove data after the last forward slash from the page name.

function changePage (contentArea, hashValue) {

// Get path for partial page

var path = $("alhref='" + hashvalue + "']")
.data ("page-path") || "";

// Remove # to create the page file name

var pageName = hashValue.substr(l);

// Remove any trailing data after the slash

if (pageName.lastIndexOf("/") >= 0) ({
pageName = pageName.substring(O0,
pageName.lastIndexOf ("/")) ;

}

// Rest of the code

Update Person Service

Update the personService closure to add a method to retrieve a single person
record from the Web API. Open the person.service.js file and add the
following method.

Apply Angular Techniques to jQuery Applications - Part 2 19
Copyright © 2017 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.



Apply Angular Techniques to jQuery Applications - Part 2

function get (id, success, failure) {
// Get a single row of data
$S.ajax ({
url: API URL + id,
type: 'GET',
dataType: 'Json'
})
.done (function (data) {
success (data) ;
)
.fail (function (error) {
if (failure) {
failure (error);
}

else {

console.error ("Error Occurred: " + error);

1)

Modify the return statement within this closure to expose this new method.

return {

getPeople: function (success, failure) {
getPeople (success, failure);
by

get: function (id, success, failure) {
get (id, success, failure);
}
}s

Run the page and you should now be able to display the person detail page
with a specific person’s data filled in.

Update a Person

After you have displayed a person in the appropriate input fields on the
person detail page, you can now allow the user to change the data, click on a

Save button and modify the data by calling the Web APl PUT() method. Open
the person.detail.js file and add the following methods in the closure.

20 Apply Angular Techniques to jQuery Applications - Part 2

Copyright © 2017 by Paul D. Sheriff
All rights reserved worldwide. Reproduction is strictly prohibited.



Update a Person

function getDataFromInput () {
return {

personId: $ ("#personId").val(),
firstName: $("#firstName") .val(),
lastName: $("#lastName") .val(),
emailAddress: $("#emailAddress").val(),
startDate: $("#startDate").val().replace(/[" -z]l/g9, ''),
salary: $("#salary") .val()

}

function save () {
// Gather data from HTML inputs
vm.person = getDataFromInput () ;

// Update data
if (vm.person) {
updateData() ;
}
}

function updateDataSuccess (data) {
// Return to list page
window.history.back(-1);

}

function updateData () {
// Get data from HTML
vm.person = getDataFromInput () ;
// Call Service to update data
personService.updateData (vm.person, updateDataSuccess);

At the bottom of the closure, add a new public method, save(), to the return
statement.

return {
get: function () {
// NO CHANGES HERE
b
save: function () {
save() ;
},
cancel: function () {
window.history.back(-1) ;
}
}i

Open the person.detail.html page and add a footer to the Bootstrap panel.
Add a Save and a Cancel button in a row in this footer.

Apply Angular Techniques to jQuery Applications - Part 2 21
Copyright © 2017 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.



Apply Angular Techniques to jQuery Applications - Part 2

<div class="panel-footer">
<div class="row">
<div class="col-xs-12">
<button type="button"
id="btnSave"
class="btn btn-primary"
onclick="personDetailComponent.save();">
Save
</button>
<button type="button"
id="btnCancel"
class="btn btn-primary"
onclick="personDetailComponent.cancel () ;">
Cancel
</button>
</div>
</div>
</div>

Update Person Service

To call the Put() Web APl method, add a new method to the person service
closure. Open the person.service.js file and add the following method.

function updateData (person, success, failure) {
// Update single row of data
$.ajax ({
url: API URL + person.personld,
type: 'PUT',
data: person,
dataType: 'Json'
})
.done (function (data) {
success (data) ;
})
.fail (function (error) {
if (failure) {
failure (error);
}
else {
console.error ("Error Occurred: " + error);

}):

Modify the return statement in this closure to expose this updateData()
method. Add this new signature after the get() method in the return statement
as shown below.

22 Apply Angular Techniques to jQuery Applications - Part 2
Copyright © 2017 by Paul D. Sheriff
All rights reserved worldwide. Reproduction is strictly prohibited.



Add a Person

updateData: function (person, success, failure) {
updateData (person, success, failure);

}

Run your application and click on one of the Edit buttons. Change some of
the person data, and click the Save button. You should see the changes
appear in the person list.

Add a Person

Open person.list.html and create an Add Person button above the HTML
table.

<div class="row">
<div class="col-xs-12">
<a href="#person.detail"
data-page-path="./person/"
title="Person Information"
1d="btnAdd"
disabled="disabled"
class="btn btn-primary'>
Add Person
</a>
</div>
</div>

The Add Person button is disabled until all items in the person list have been
displayed. Open the person.list.js and add a new line of code as the last line
in the getAllSuccess() method. This line of code enables the Add Person
button after all line items have been successfully loaded.

// Enable Add button
S ("#btnAdd") .removeAttr ('disabled') ;

Let’s also add a function to handle exceptions in the person.list.js file. For
now, let’s just check for a 404 which means that no data was found. If there
are no records in the person table, you still want to enable the Add Person
button. Add the handleException() method shown below.

Apply Angular Techniques to jQuery Applications - Part 2 23
Copyright © 2017 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.



Apply Angular Techniques to jQuery Applications - Part 2

function handleException (error) {
switch (error.status) {
case 404:
// Enable Add Person button
S ("#btnAdd") .removeAttr ('disabled') ;
break;

default:
break;

In the getAll() method add the handleException() method as the second
parameter in the call to the personService.getAll() method.

function getAll () {
// Call Service to get list of data
personService.getAll (getAllSuccess, handleException) ;

}

If you run the page right now, you should see the Add Person button is
disabled until the list of person data loads. Don't click on the Add Person
button yet, as we still need to do a little more work.

Update Person Service

Add a new method to the person.service.js file to call the Post() method in the
Web API.

24

Apply Angular Techniques to jQuery Applications - Part 2
Copyright © 2017 by Paul D. Sheriff
All rights reserved worldwide. Reproduction is strictly prohibited.



Add a Person

function addData (person, success, failure) {
// Add a single row of data
$S.ajax ({
url: API URL,
type: 'POST',
data: person,
dataType: 'Json'

})
.done (function (data) {
success (data) ;

1)

.fail (function (error) {
if (failure) {
failure (error);

}
else {
console.error ("Error Occurred: " + error);

1)

Modify the return statement in this closure to expose this addData() method.
Add this new signature after the updateData() method in the return statement.

addData: function (person, success, failure) {
addData (person, success, failure);

}

Modify get() Method

Open the person.detail.js file and modify the get() method to create an empty
person object if no personld is passed in. You can set any defaults that you
want. In the code below, | set the startDate to today’s date and the salary to
zero.

Apply Angular Techniques to jQuery Applications - Part 2 25
Copyright © 2017 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.



Apply Angular Techniques to jQuery Applications - Part 2

function get (id) {
if (id) |
// Call Service to get data
personService.get (id, getSuccess);
}
else {
vm.person = {
personld: null,

firstName: "",

lastName: "",

emailAddress: "",

startDate: new Date () .toLocaleString(),
salary: O

}i
// Display fields in HTML inputs
displayData (vm.person) ;
}
}

Create an addData() Method

Add a new method called addData() to your person.detail.js file. This method
is called when you need to add a new person. It is responsible for calling the
addData() method in the person service.

function addDataSuccess (data) {
// Return to list page
window.history.back(-1);

}

function addData () {
// Get data from HTML
vm.person = getDataFromInput () ;
// Call Service to update data
personService.addData (vm.person, updateDataSuccess);

}

Modify save() Method

Locate the save() method in the person.detail.js file and modify the code to
check to see if the personld property is not null. If not, then you call the
updateData() method. Otherwise you call the new addData() method.

26 Apply Angular Techniques to jQuery Applications - Part 2
Copyright © 2017 by Paul D. Sheriff
All rights reserved worldwide. Reproduction is strictly prohibited.



Delete a Person

function save () {
// Gather data from HTML inputs
vm.person = getDataFromInput () ;

// Save data

if (vm.person.personId) ({
updateData () ;

}

else {
addData() ;

}

}

Go ahead and run the application and add a new person. Click on the Save
button and you should see the person appear in the person list.

Delete a Person

To delete a person, add a new Delete button to the person HTML table. Open
the person.list.html page and add a new table header.

<th>Delete</th>
In the data template, add a new table detail column.

<td>
<button class='btn btn-primary’
onclick="personListComponent

.deleteData ({{personlId}}) ;">
<span class='glyphicon glyphicon-trash' />
</button>
</td>

Open the person.list.js file and add the following two methods.

Apply Angular Techniques to jQuery Applications - Part 2 27
Copyright © 2017 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.



Apply Angular Techniques to jQuery Applications - Part 2

function deleteDataSuccess (data) {
// Refresh the List
getAll ()

}

function deleteData (id) {
personService.deleteData (id, deleteDataSuccess);

}

In the return statement of the personListComponent closure, add the following
method call.

deleteData: function (id) {
if (confirm("Delete this Person?")) {
deleteData (id) ;
}

Update Person Service

Add a new method to the person service to delete a person record. Open the
person.service.js file and add the following method.

function deleteData (id, success, failure) {
// Delete a single row of data
$.ajax ({
url: API URL + id,
type: 'DELETE’,
dataType: 'Jjson'
})
.done (function (data) {
success (data) ;
})
.fail (function (error) {
if (failure) {
failure (error);
}
else {
console.error ("Error Occurred: " + error);

}):

Add a new method to the return statement at the bottom of this closure.

28 Apply Angular Techniques to jQuery Applications - Part 2
Copyright © 2017 by Paul D. Sheriff
All rights reserved worldwide. Reproduction is strictly prohibited.



Summary

deleteData: function (id, success, failure) {
deleteData (id, success, failure);

}

Run the page and delete one of the person records. After deleting the record,
you should see the list refresh, and the record you deleted has been
removed.

Summary

In this blog post you took the single page techniques you learned in the
previous blog post and created a CRUD page. You learned to break up your
HTML and your JavaScript into separate files. This structure keeps your
application broken up into small, discrete, easily-modified and maintainable
chunks. The design patterns presented in this article will help you move
toward some of the frameworks in use today such as VuedS, Angular and
React.

You can get the samples at www.pdsa.com/downloads. Choose “PDSA
Blogs” from the Category, then select “Apply Angular Techniques to jQuery
Applications — Part 2.

Apply Angular Techniques to jQuery Applications - Part 2 29
Copyright © 2017 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.


http://www.pdsa.com/downloads

	Apply Angular Techniques to jQuery Applications – Part 2
	Create Server-Side Code
	Person Table
	Web Project
	Entity Framework Classes
	Base Web API Controller Class
	Person Controller Class
	Camel-Case Property Names

	Display a List of Person Data
	Copy Files from Previous Post
	Add Mustache.js to your Project
	Create Person Service Closure
	Create Person List HTML
	Create Person List Closure

	Display a Single Person
	Create Person Detail Closure
	Add Button to Call Person Detail
	Update Person Service

	Update a Person
	Update Person Service

	Add a Person
	Update Person Service
	Modify get() Method
	Create an addData() Method
	Modify save() Method

	Delete a Person
	Update Person Service

	Summary

