
PDSC Developer Utilities -
Version 9

The PDSC Developer Utilities (9) as shown in Figure 1 is a set of tools to help you
develop your .NET applications, and to keep your development environment clean
and working as efficient as it can. This chapter gives you an overview of the various
utilities and describes the installation of the tool.

Figure 1: Screen shot of the PDSC Developer Utilities Startup Screen.

Overview of the Developer Utilities
After installing the PDSC Developer Utilities you will have the following programs
that you can run.

Utility Description

Computer Cleaner Visual Studio and .NET are great development
environments for creating applications quickly.
However, they tend to leave a lot of
miscellaneous folders and files all over your
hard drive. This utility recycles these folder and
files to free up hard drive space.

PDSC Developer Utilities V9 Usage

2 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

Utility Description

Project Cleaner This tool goes through Visual Studio or VS Code
project folders and recycles several folders that
are not needed and can be regenerated
automatically next time you build your
application. You can optionally have it look in
.SLN, VBProj, CSProj files and eliminate any
references to source control. It can also remove
any read-only attributes from the files. This
utility is configurable so you can choose what
folders and files you wish to recycle.

Property Generator This utility generates C# or Visual Basic
property statements. There are several
templates (like the snippets in the Visual Studio
editor) from which you can choose. You can
also create your own templates to generate any
type of property you want.

JSON Generator This utility allows you to choose a table or view
and generates a JSON file of the data.

XML Generator This utility allows you to choose a table or view
and generates an XML file of the data.
Optionally, an XSD file of the schema of the
table or view can also be generated.

Code Generator This utility generates Entity, Repository, View
Model and Search classes from a table. It can
also generate CRUD WPF, MVC, .NET MAUI,
Web API (MVC), and Minimal Web API
applications.

SQL Server Schema Compare This utility compares two SQL Server databases
to determine any tables, constraints, stored
procedures, views, etc. that are missing
between the two databases.

XML Files A list and a description of each XML file used in
the PDSC Developer Utilities.

Table 1. List of PDSC Developer Utilities.

Computer Cleaner
Visual Studio, Visual Studio Code, the .NET Framework, and .NET Core are great
development environments for creating applications quickly. However, they
sometimes leave a lot of miscellaneous files all over your hard drive. There are a
few locations on your hard drive that you should check to see if there are left-over
folders or files that you can delete. I have attempted to gather as much data as I
can about the various versions of .NET and operating systems. Of course, your

Computer Cleaner

PDSC Developer Utilities V9 Usage 3
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

mileage may vary on the folders and files listed here. This utility attempts to find the
various folders depending on which version(s) of Visual Studio, VS Code, the .NET
Framework, and .NET Core you have installed on your machine.

NOTE: You may need to run this utility as an
Administrator on your computer to have
it clean up all files and folders.

Disclaimer Tab
When you first come into the Computer Cleaner utility, a disclaimer tab (Figure 2) is
displayed. We provide you with the warning that this tool is going to recycle files on
your computer into the Recycle Bin. It puts them into the Recycle Bin so you can
retrieve them if necessary. As there is always the potential for things to go wrong as
Microsoft changes their operating systems frequently; it is good to be able to
recover these recycled files. Please note that PDSC does not take any responsibility
for the use of this tool on your machine.

Figure 2: Disclaimer screen.

The first thing you need to do is to click on the Preview button in the lower left-hand
corner. This will provide you with a preview of the folders and/or files that are going
to be recycled.

PDSC Developer Utilities V9 Usage

4 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

NOTE: Clicking on the Preview button can take
a few minutes depending on how many
folders and files are on your hard drive.

Selected Folders to Recycle Tab
After clicking on the Preview button, the list of folders that will be recycled is
displayed (Figure 3). The list of folders that are going to be recycled is contained in
the file [MyDocuments]\PDSCDeveloperUtilities9\Xml\ComputerCleaner-
FoldersToRecycle.xml. You can also create a ComputerCleaner-
FoldersToRecycle.xml in the [MyDocuments]\PDSCDeveloperUtilities9-
[YourLoginId]\Xml to add as many additional folders to recycle as you wish.
Be sure to review this list carefully. You may unselect any folders that you do not
wish to recycle by unchecking the check box under the "Recycle?" Column next to
the folder you don't want to recycle.

Figure 3: A list of the specified folders to recycle.

Column Description

Recyle? Check to recycle this folder and/or the files within this folder.

Path The actual path to the folder/files to recycle

Description A description of the folder.

Category What type of files, or the application, that created the files in this folder.

Computer Cleaner

PDSC Developer Utilities V9 Usage 5
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

Recyle this
Folder?

If set to true, this folder and all subfolders and files within it will be deleted. If the
Description field reads "Automatically rebuilt by …" then this folder is safe to have
deleted.

Recycle
SubFolders?

If set to true, then any subfolders within this folder will be deleted.

Recycle
Files Only?

If set to true, then any files within this folder and subfolders will be deleted.

Total
Folders

After clicking the Preview button, this column displays the total number of folders
found within this folder.

Total Files After clicking the Preview button, this column displays the total number of files
found within this folder.

Total Size After clicking the Preview button, this column displays the total number of bytes of
all files/folder found within this folder.

NOTE: The estimated count of folders and files,
and the total bytes, is just an estimate of
what could potentially be recycled. If the
folder/file is in use, then it can't be
recycled.

Specific Files to Recycle Tab
On this tab (Figure 4) is a list of specific files to recycle. The list of files that are
going to be recycled is contained in the file
[MyDocuments]\PDSCDeveloperUtilities9\Xml\ComputerCleaner-
FilesToRecycle.xml. You can also create a ComputerCleaner-
FilesToRecycle.xml in the [MyDocuments]\PDSCDeveloperUtilities9-
[YourLoginId]\Xml to add as many additional files to recycle as you wish.

PDSC Developer Utilities V9 Usage

6 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 4: You can add additional files to recycle.

.NET Information Tab
On this tab (Figure 5) is a list of .NET Framework and .NET Core versions located
on your computer. The list of Visual Studio versions is also listed here.

Figure 5: The list of .NET Frameworks, .NET Core and Visual Studio versions on your computer.

Project Cleaner

PDSC Developer Utilities V9 Usage 7
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

Clean
Once you are satisfied with the list of folders and files to recycle from your hard-
drive, click on the Clean button. This process can take several minutes depending
on how many folders and files are on your hard drive. After this process is complete,
the complete list of folders and files recycled is listed in the Folders Recycled and
Files Recycled tabs.
You can view the list of everything that happened on the Messages tab, and all
these messages are written into a log file that is in your [My
Documents]\PDSCDeveloperUtilities9-[YourLoginId]\Log folder.
It is perfectly normal to have some Error Messages display as well, as some
folders/files may be in use and not able to be recycled. Or because of security
constraints, they also may not be able to be recycled.

NOTE: If after cleaning something does not work
correctly, go to your Recycle Bin and
restore the folders/files that were
recycled during this cleaning process.

Project Cleaner
When you create a project in Visual Studio, compile in different modes, and add the
project to source control; a set of files and folders are created under your original
project folder. Sometimes you might want to delete all these folders and files. For
example, if you wish to give your project to someone else that is not on your
network, does not have access to your source control, or you just want to clean up
the folders under your project prior to adding your project for the first time to source
control, you may want to eliminate all these extra files and folders using the Project
Cleaner utility.

Folder to Clean
The first tab, shown in Figure 6, allows you to choose the folder to clean up.

PDSC Developer Utilities V9 Usage

8 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 6: Tab: Folder to Clean - Clean up files using the Project Cleaner utility.

You will first enter a top-level folder and the Project Cleaner utility will iterate
through all the lower-level folders and files underneath this folder and perform a
series of operations. The fields on this tab are described in Table 2.

Field Description

Top Level Project Folder Enter the top-level folder you wish to iterate through

Files to be Recycled A list of file extensions that should be recycled.

Folders to be Recycled A list of folder names that should be recycled.

Table 2: Fields to fill in for cleaning projects.

NOTE: This utility only goes through the folder
and sub-folders specified in the Top-
Level Folder field. If the solution in the
top-level folder points to another project
in another folder structure, that other
project will NOT have any of its attributes
reset, or its source control references
removed.

Project Cleaner

PDSC Developer Utilities V9 Usage 9
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

Cleaning Options
On the Cleaning Options, shown in Figure 7, you can select which folders and files
to delete when cleaning up the top-level folder.

Figure 7: Tab: Cleaning Options – Choose which items to remove from the top-level folder.

The fields on this tab are described in Table 3.

Field Description

Recycle Packages
Folders?

recycle the "packages" folder.

Package Folder Names Fill in the names of the packages folders to recycle.

Recycle node_modules
Folder?

Check to recycle any node_modules folders.

node_modules Folder
Name

Fill in the names of the node_modules folders to recycle.

Recycle Test Result
Folders?

Check to recycle any test result folders.

Test Folder Names Fill in the names of the test result folders to recycle.

PDSC Developer Utilities V9 Usage

10 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

Recycle SCC
References?

Check this is you wish this utility to recycle the folders and files listed
and to also open your .SLN and any .csproj or .vbproj files and remove
the source control tags from these files.

Set File Attributes to
Normal?

Check this to set the attribute of all files under the top-level Folder to
normal.

SCC Folders to be
Recycled

A list of source control folders that should be recycle.

SCC Files to be Recycled A list of source control file extensions that should be recycle.

Table 3: Options for files/folders to remove when cleaning up a project.

Source Control Tags
The list of SCC tags (Figure 8) that are going to be removed from your .SLN or
.CSPROJ file comes from the [MyDocuments]\PDSCDeveloperUtilities9\Xml\
ProjectCleaner-SourceControlTags.xml. You can also create a ProjectCleaner-
SourceControlTags.xml in the [MyDocuments]\PDSCDeveloperUtilities9-
[YourLoginId]\Xml to add as many additional SCC tags to recycle as you wish.

Figure 8: Tab: Cleaning Options – Choose which items to remove from the top-level folder.

Property Generator
Visual Studio has code snippets that will let you create properties (Figure 9). These
snippets such as prop and propfull are great for normal one-at-a-time properties.

Property Generator

PDSC Developer Utilities V9 Usage 11
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

However, when you wish to create a lot of properties, or you need other types of
properties, this is where the PDSC Property generator can help you out.
This tool will allow you to put in a comma-delimited list of property names, choose a
scope and a data type and will then generate all the appropriate private variables
and public property names in C# or Visual Basic. You will have a set of different
templates to choose from that will allow you to create automatic properties,
properties that raise the NotifyPropertyChanged event. You are also able to add
your own templates to control how you generate the properties.

Figure 9: Property generator helps you create properties in many different styles.

The Supplied Templates
Under the [My Documents]\PDSCDeveloperUtilities9\Xml folder is a file named
PropertyGen-Templates.xml. This file contains the list of template files supplied
with the PDSC Developer Utilities used to generate properties for C# and Visual
Basic. There is also a folder named \Templates\PropertyGenerator (Figure 10) in
which there are several .txt files that hold the snippets for each of the types of
properties that you can generate.

PDSC Developer Utilities V9 Usage

12 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 10: All the property snippets are just contained in .txt files

In this PropertyGen-Templates.xml file is one node for each .txt file located in the
[My Documents]\PDSCDeveloperUtilities9\Templates\PropertyGenerator
folder.

Add Your Own Property Generator Templates
To add a new template to generate properties the way you want them, copy the [My
Documents]\PDSCDeveloperUtilities9\Xml\PropertyGen-Templates.xml file to
[My Documents]\PDSCDeveloperUtilities9-[YourLoginId]\Xml\PropertyGen-
Templates.xml. Open this new file and delete all but the first node.
Modify the Description element to something you will recognize and the FileName
element to the name of your new .txt file. Set the Language element to either
CSharp or VBNET. Specify a true or false value in the GenPrivateVars and
GenPublic elements as appropriate for your template.

<PropertyTemplate>
 <Description>C# My Method Get/Set</Description>
 <FileName>CS_Test.txt</FileName>
 <Language>CSharp</Language>
 <GenPrivateVars>True</GenPrivateVars>
 <GenPublic>True</GenPublic>
</PropertyTemplate>

Create a copy of the [My
Documents]\PDSCDeveloperUtilities9\Templates\CS_Property.txt and paste
that copy into the [My Documents]\PDSCDeveloperUtilities9-
[YourLoginId]\Templates\PropertyGenerator folder. Rename the file to
CS_Test.txt. Open the CS_Test.txt in Notepad and modify the template to however
you want it to generate. For example, in the following code a method named
MyMethod() within the set statement.

Property Generator

PDSC Developer Utilities V9 Usage 13
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

/// <summary>
/// Get/Set <|PROPERTY_NAME|>
/// </summary>
<|SCOPE|> <|STATIC|> <|LANGUAGE_DATA_TYPE|> <|PROPERTY_NAME|>
{
 get { return <|PRIVATE_FIELD_PREFIX|><|PROPERTY_NAME|>; }
 {|READ_ONLY|}set
 {
 <|PRIVATE_FIELD_PREFIX|><|PROPERTY_NAME|> = value;
 MyMethod("<|PUBLICNAME|>");
 }{/|READ_ONLY|}
}

Close and restart the PDSC Developer Utilities and your new template for the
property generator now appears as a C# property generation option.

Property Generator Tokens
In the .txt files that represent the code to generate for the properties you find a set
of tokens in the format <|TOKEN_NAME|>. There are a few tokens that are
recognized by our property generator that are different from the Code Generator
tokens. Table 4 contains the list of the tokens that you can use in your templates.

Token Description

{|READ_ONLY|} and
{|/READ_ONLY|}

Wrap these tokens around your "set" property to remove
the "set" if you choose "Read only" in the Property
Genreator tool.

<|READ_ONLY|> Used for Visual Basic to insert "ReadOnly" into a property
name

<|SCOPE|> Returns the scope specified in the property generator
tool.

<|STATIC|> Returns "static"

<|SHARED|> Returns "Shared"

<|NO_PRIVATE_VARIABLES|> Do not generate the private variables

Table 4. List of Tokens in Property generator

Other XML files for the Property Generator
There are a few other XML files (Table 5) that the property generator uses to assist
with the generation. These files are located in the [My
Documents]\PDSCDeveloperUtilities9\Xml folder under the location where you
installed the Developer Utilities.

PDSC Developer Utilities V9 Usage

14 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

Xml File name Description

LanguageDataTypes.xml A list of data types for C# and Visual Basic.

LanguageScopes.xml A list of scopes for C# and Visual Basic.

PropertyGen-Templates.xml The list of templates that can be generated

Table 5. List of XML files used by the Property Generator.

JSON Generator
JSON files are very handy for a lot of things. The PDSC JSON Generator utility
builds a JSON file from the data within any table or view in your SQL Server
database.

Step 1: SQL / Select Object to Generate
To start the JSON generation process, put in the appropriate connection string that
will connect you to your database (Figure 11). You can select the type of objects to
load (Tables and/or Views). If you have a large collection of objects in your
database, you may wish to fill in a Schema name (or partial schema name), and/or
an object name (or partial object name) prior to clicking on the Load button.
Click on the Load button to load all objects in the database. Click on one of the
objects in the list and the appropriate SQL statement will be generated in the text
box below the object list. You can modify the Class Name (Singular), Class Name
(Plural), Description (Singular), and Description (Plural) in the Grid for the class to
generate. You can also modify the SQL statement prior to moving to step 2 if you
wish to generate a different set of columns, add a SELECT TOP n to generate a
limited set of rows, or use aliases for your columns to generate different names for
your element/attribute names.

JSON Generator

PDSC Developer Utilities V9 Usage 15
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

Figure 11: Step 1: JSON Generator SQL Tab.

Step 2: Generate
Click on Step 2: Generate (Figure 12) to fill in information on how you wish to
generate the JSON. You can either write to a file or not. If you write to a file, specify
the name of the file and the folder for the JSON file. A ".json" file extension will
automatically be added to the file name. You will be prompted to overwrite this file if
you check the Prompt to Overwrite? check box.

PDSC Developer Utilities V9 Usage

16 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 12: Step 2: JSON Generator Generate Tab.

Click the Generate button to start the generation process.

View the JSON Output
After you click on the Generate (Figure 13) button, you are presented with the
screen shown in Figure 13. This screen shows you where the generated .json file is
located and the JSON output.

XML Generator

PDSC Developer Utilities V9 Usage 17
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

Figure 13: JSON Generator Output tab.

XML Generator
XML files are very handy for a lot of things. The PDSC XML Generator utility builds
XML and XSD files from any table or view in your SQL Server database.

Step 1: SQL / Select Object to Generate
To start the XML generation process, put in the appropriate connection string that
will connect you to your database (Figure 14). You can select the type of objects to
load (Tables and/or Views). If you have a large collection of objects in your
database, you may wish to fill in a Schema name (or partial schema name), and/or
an object name (or partial object name) prior to clicking on the Load button.
Click on the Load button to load all objects in the database. Click on one of the
objects in the list and the appropriate SQL statement will be generated in the text
box below the object list. You can modify the Class Name (Singular), Class Name
(Plural), Description (Singular), and Description (Plural) in the Grid for the class to
generate. You can also modify the SQL statement prior to moving to step 2 if you
wish to generate a different set of columns, add a SELECT TOP n to generate a
limited set of rows, or use aliases for your columns to generate different names for
your element/attribute names.

PDSC Developer Utilities V9 Usage

18 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 14: Step 1: XML Generator SQL Tab.

Step 2: Generate
Click on Step 2: Generate (Figure 15) to fill in information on how you wish to
generate the XML/XSD files. You can specify your Root Element Name, and for
each row the Child Element Name to use. Check the Write XSD File? to generate
an XSD file. Check the Create Attribute-Based XML? to generate attribute-based
XML file.
You can either write to a file or not. Fill in the name of the XML file name and XML
Output folder. Fill in the XSD file name and XSD output folder. You will be prompted
to overwrite this file if you check the Prompt To Overwrite? check box.
Click the Generate button to start the generation process.

XML Generator

PDSC Developer Utilities V9 Usage 19
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

Figure 15: Step 2: XML Generator Generate Tab.

XML Output
After you click on the Generate button, you will be presented with the screen shown
in Figure 16.

Figure 16: XML Output Tab.

PDSC Developer Utilities V9 Usage

20 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

XSD Output
If you generated an XSD, you view the XSD on the screen show in Figure 17.

Figure 17: XSD Output tab.

Code Generator
The PDSC Code Generator generates a set of classes and pages for one or more
tables in your SQL Server database. For example, with the supplied templates, you
can generate Entity, Repository, Search and View Model classes for accessing data
in a SQL Server database. You can generate a Web API application using MVC, a
.NET MAUI application, and an MVC website application. Other technologies are
added periodically to this code generator.

Code Generator Limits
The code generator is intended to provide you with a good head start on the
standard CRUD logic for your tables, but it can't handle every situation. Below are
some scenarios that are not currently handled by the code generator.

• Multiple columns in the primary key.
• Two fields having a foreign key relationship to the same foreign key table.
• A field in one table referencing a foreign key field in the same table.

Code Generator

PDSC Developer Utilities V9 Usage 21
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

• When there is no auto-incrementing primary key on a table (or a string or
GUID primary key), the edit control on the page can be edited. You need to
mark this edit control as read-only after generating.

The above scenarios will require you to do some manual coding to get it to work
correctly.

Step 1: Select Template(s)
On the first tab (Figure 18) from the Select a Template Group drop-down, choose a
template group you wish to generate. In the Grid, select one or more of the
templates to generate from within that group. Most typically you will leave them all
checked.

Figure 18: Step 1: Code Generator Select Template Tab.

The following table explains what you can currently generate with the Code
Generator.

Template Description

Web API MVC – Application Generates all the files necessary to build a complete MVC Web API
application using controllers. A .cmd file is also created to make it
easy to create the Web API application once generated.

PDSC Developer Utilities V9 Usage

22 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

.NET MAUI – Application
Using Web API MVC

Generates all the files necessary to build a complete .NET MAUI
application using the Web API MVC for data access. A .cmd file is
also created to make it easy to create the .NET MAUI application
once generated.

.NET MAUI – Application
Using Minimal Web API

Generates all the files necessary to build a complete .NET MAUI
application using the Minimal API MVC for data access. A .cmd file
is also created to make it easy to create the .NET MAUI application
once generated.

MVC Website - Application Generates an MVC controller class, a home page, Program.cs, and
an appsettings.Development.json file to replace the default ones
generated by the dotnet new mvc command. A .cmd file is also
created to make it easy to create the MVC Website application once
generated.

WPF - Application Generates a WPF application and all the list and view screens for all
tables selected. A .cmd file is also created to make it easy to create
the WPF application once generated.

Minimal Web API
Application

Generates all the files necessary to build a complete Minimal Web
API application using router classes. A .cmd file is also created to
make it easy to create the Minimal Web API application once
generated.

Hard-Coded Data
Repository

Generates Entity and Repository classes. The Repository class
returns hard-coded list of Entity data that you select from one of
your database tables. The fields generated are the primary key
field(s) and any tables marked as Display in Table.

When creating exercises for a training class, or to test some
functionality, but you don't want to have to connect to a database,
it is nice to have a collection of hard-coded data that can be
returned. Instead of you having to create all this data by hand, if
you have a table with data, you can use this generator to select
some data and have it hard-coded into a repository class.

Entity/ViewModel Classes Generates an Entity class with properties that matches each
column in each selected table. Generates a Search class. Generates
a ViewModel class that accepts an IRepository<TEntity,
TSEarch>object.

Data Classes - Entity
Framework

Generates a Repository class that uses the Entity Framework to
communicate with the database. Generates a DbContext class to
which you can add additional generated code for more tables.

Data Classes - HttpClient
API

Generates a Repository class that uses the .NET HttpClient to make
Web API calls to a web service with API endpoints to communicate
with the database.

Stored Procedures Generates a set of CRUD stored procedures for each table.

Web API MVC - Controllers Generates all the CRUD controllers with endpoints for each table
selected.

Code Generator

PDSC Developer Utilities V9 Usage 23
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

.NET MAUI - Views Generates a list and detail page for use in the .NET MAUI
application. Generates the commanding View Model.

MVC Website - Views Generates partial pages for listing, searching, adding, editing, and
deleting data from each table selected.

WPF – Views Generates list, detail, and search screens to be used in a WPF
application.

Minimal Web API Routers
and Search Classes

Generates router classes and search classes that work with Minimal
Web API applications.

Table 6. List of Standard Template in the Code Generator

Step 2: Tables/Views to Generate
Either type in or select from the drop-down a connection string that will connect you
to your database (Figure 19). You can select the type of objects to load (Tables
and/or Views). If you have a large collection of objects in your database, you may
wish to fill in a Schema name (or partial schema name), and/or an object name (or
partial object name) prior to clicking on the Load Tables/Views button.
Click on the Load Tables/Views button to load all objects in the database. Click on
one of the objects in the list and you can modify the Class Name (Singular), Class
Name (Plural), Description (Singular), and Description (Plural) in the Grid for the
class to generate.
You are allowed to generate one or more tables by making sure the Generate check
box is checked next to the table for which you wish to generate code. When a table
in this grid is highlighted, you can view the columns for that table in the Step 3:
View Columns tab.

NOTE: Tables that have multiple primary key
fields cannot be generated. Tables with
no primary keys will be generated as a
View.

PDSC Developer Utilities V9 Usage

24 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 19: Step 2: Code Generator Tables/Views to Generate Tab.

Table 8 describes each of the various columns in the Columns grid.

Column Description

Generate? Check this to generate code for this table/view.

Schema
Name

The SQL Server schema name that contains this database object.

Object
Name

The SQL Server database object name.

Object
Type

The SQL Server database object type (Table or View).

Class
Name
(Singular)

The class name to be generated for this database object as a "singular" noun.

Class
Name
(Plural)

The class name to be generated for this database object as a "plural" noun.

Description
(Singular)

A description that can be used in code generation as a "singular" verb.

Description
(Plural)

A description that can be used in code generation as a "plural" verb.

Code Generator

PDSC Developer Utilities V9 Usage 25
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

Clear
Saved
Data

When changes are made to the previous columns, this data and the column data are
stored in a [MyDocuments]\PDSCDeveloperUtilities9-
[YourLoginId]\CodeGeneration\[DatabaseName]\[TableName].json file.
Clicking on this button deletes that file so you can reset all previously saved
changes.

Foreign
Keys

The list of related tables to the current table.

Can't
Generate
Reason

This is a message that describes why a table can't be generated, or if a table will be
generated as a view.

Table 7: A description of the columns in the code generation table/views grid.

Step 3: View Columns
On this tab (Figure 20) you can view all the columns for a selected table on the
previous tab. If you have not clicked on a table, this list will be blank. For the
selected table you may check or uncheck the appropriate usage of each of the
columns. You may also modify the Property Name, Label and C# data type. If you
change any of these values, they are saved after the generation occurs and will be
available the next time you generate.

Figure 20: Step 3: Code Generator View Columns Tab.

Table 8 describes each of the various columns in the Columns grid.

Column Description

Column
Name

This is the actual column name in the table. This value cannot be changed.

PDSC Developer Utilities V9 Usage

26 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

Property
Name

The name of the C# property that will be mapped to this field.

Label The label to display next to the data entry field for this column.

C# Data
Type

The C# data type this column is mapped to.

Search
Field?

Do you want this column to appear in a screen used for searching? This field will
also be included in the AddWhereClause() method in the Repository class.

Description
Field?

Typically, you only specify one column as the description column. This column may
be used in a list box or a combo box in the drop-down portion of the control.

Display in
Table?

Do you want this column to appear in a table or list displayed on a screen?

Display in
Edit?

Do you want this column to appear as an editable field in a form displayed for the
user.

Insertable? Can the value for this column be in an INSERT statement, or is it automatically
generated like an IDENTITY property.

Editable? Can the value for this column be in an UPDATE statement, or is it automatically
generated.

Is Std.
Field?

Is this column one of the standard fields listed in the
[MyDocuments]\PDSCDeveloperUtilities9-[YourLoginId]\Xml\CodeGen-
StandardFields.xml file.

Is Foreign
key?

Is this column a Foreign Key?

Email? Does this column hold an email address?

Credit
Card?

Does this column hold a credit card number?

Phone? Does this column hold a phone number?

Password? Does this column hold a password?

Currency? Does this column hold a currency value?

 The rest of the columns are gathered directly from the SQL Server table
and are not changeable.

Table 8: A description of the various column properties you may set.

Step 4: Generate
Click on Step 4: Generate (Figure 21) to fill in information on how you wish to
generate the classes as shown in Table 9.

Field Description

Application Name The application name.

Code Generator

PDSC Developer Utilities V9 Usage 27
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

Namespace The namespace to use in your generated classes.

DbContext Class
Name

The name of the Entity Framework DbContext class to generate.

Generation Output
Folder

The location to which you want all the files to be generated.

.NET Version Select which version of .NET you wish to generate.

Delete Output Folder
Before Generating?

If you previously generated code, and you wish to delete that old code
prior to generating new code, check this option.

Open Windows
Explorer After
Generating?

If you want Windows Explorer to open to the Generation Output Folder
after generating, check this option.

Backing Field Prefix The prefix to use before all private fields for your properties.

Stored Procedure
Prefix

The prefix to use before all generated stored procedures.

Standard Fields in All
Tables?

Only check this option if all tables selected have the same set of standard
fields as listed in the CodeGen-StandardFields.xml file.

Include Property
Comments?

Check this if you wish property comments to be generated.

Include Data
Annotations?

Check this is you wish to include data annotations on the properties in
your Entity classes.

Use Full Property
Get/Set?

Check this if you wish to use a backing field and a full property get/set,
otherwise, auto-properties are generated.

Use PropertyChanged
Event?

If you are generating code to be used with WPF or other XAML
applications, check this to have a RaisePropertyChanged event called
within each property set.

Use HTTPS for Web
API Project?

Check this if you wish to use HTTPS for the Web API project.

Table 9: Code Generation Parameters.

Click the Generate button to start the generation process.

PDSC Developer Utilities V9 Usage

28 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 21: Step 4: Code Generator Generate Tab.

After you have clicked on the Generate button a File Explorer window is opened to
the folder in which you chose to generate the code.

Adding a New Generated Table to Your Project
In the _DoNotAddToProject-Includes folder (Figure 22) is where you will find files
that have code you may need to manually add to some of your previously generated
files in your project.

Figure 22: Examples of additional code to add to previously generated files

After you have generated your project for the first time, and you then go back into
the Code Generator to add another table, there are a few steps you take to add the
classes required to work with the new table to your Visual Studio project.

Code Generator

PDSC Developer Utilities V9 Usage 29
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

All Applications
Open the GeneratedCode_DoNotAddToProject-
Includes\DbContextDbSetsTables.txt file and add any lines of code to the
PROJECT.DataLayer\DbContextClasses\PROJECTDbContext.cs class in your VS
project.
Open the GeneratedCode_DoNotAddToProject-
Includes\DbContextDbSetsViews.txt file and add any lines of code to the
OnModelCreating() method in the
PROJECT.DataLayer\DbContextClasses\PROJECTDbContext.cs class in your VS
project.
Copy the GeneratedCode\PROJECT.DataLayer\RepositoryClasses*.cs file(s) to
the PROJECT.DataLayer\RepositoryClasses folder in your VS project.
Copy the GeneratedCode\PROJECT.EntityLayer\EntityClasses*.cs file(s) to the
PROJECT.EntityLayer\EntityClasses folder in your VS project.
Copy the GeneratedCode\PROJECT.EntityLayer\SearchClasses*.cs file(s) to the
PROJECT.EntityLayer\SearchClasses folder in your VS project.
Copy the GeneratedCode\PROJECT.ViewModelLayer\ViewModelClasses*.cs
file(s) to the PROJECT.ViewModelLayer\ViewModelClasses folder in your VS
project.

For .NET MAUI Applications
Open the GeneratedCode_DoNotAddToProject-Includes\MauiProgramDITable.txt
file and add any lines of code to the appropriate methods within the
MauiProgram.cs file in your VS project.
Open the GeneratedCode_DoNotAddToProject-Includes\MauiProgramDIViews.txt
file and add any lines of code to the appropriate methods within the
MauiProgram.cs file in your VS project.
Copy the GeneratedCode\PROJECT.DataLayer.API\RepositoryClasses*.cs file(s)
to the PROJECT.DataLayer.API\RepositoryClasses folder in your VS project if this
folder exists in your project.
Copy the GeneratedCode\PROJECT.MAUI\Views*.* file(s) to the
PROJECT.MAUI\Views folder in your VS project.

For Web API (MVC) Projects
Open the Open the GeneratedCode_DoNotAddToProject-
Includes\ServiceExtensionRepositoriesTables.txt file and add any lines of code to
the appropriate methods within the \ExtensionClasses\ServiceExtensions.cs file in
your VS project.
Open the Open the GeneratedCode_DoNotAddToProject-
Includes\ServiceExtensionRepositoriesViews.txt file and add any lines of code to

PDSC Developer Utilities V9 Usage

30 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

the appropriate methods within the \ExtensionClasses\ServiceExtensions.cs file in
your VS project.
Copy the GeneratedCode\PROJECT.WebAPI\Controllers*.cs file(s) to the
PROJECT.WebAPI\Controllers folder in your VS project.
 DO NOT copy the ErrorController.cs file.

For Minimal Web API Projects
Open the Open the GeneratedCode_DoNotAddToProject-
Includes\ServiceExtensionRepositoriesTables.txt file and add any lines of code to
the appropriate methods within the \ExtensionClasses\ServiceExtensions.cs file in
your VS project.
Open the Open the GeneratedCode_DoNotAddToProject-
Includes\ServiceExtensionRepositoriesViews.txt file and add any lines of code to
the appropriate methods within the \ExtensionClasses\ServiceExtensions.cs file in
your VS project.
Copy the GeneratedCode\PROJECT.MinWebAPI\RouterClasses*.cs file(s) to the
PROJECT.MinWebAPI\RouterClasses folder in your VS project.
Copy the GeneratedCode\PROJECT.MinWebAPI\SearchClasses*.cs file(s) to the
PROJECT.MinWebAPI\SearchClasses folder in your VS project.

For MVC Website Projects
Open the Open the GeneratedCode_DoNotAddToProject-
Includes\ProgramDITables.txt file and add any lines of code to the appropriate
methods within the Program.cs file in your VS project.
Open the Open the GeneratedCode_DoNotAddToProject-
Includes\ProgramDIViews.txt file and add any lines of code to the appropriate
methods within the Program.cs file in your VS project.
Copy the GeneratedCode\PROJECT.MVC\Controllers*.cs file(s) to the
PROJECT.MVC\Controllers folder in your VS project.
Copy the GeneratedCode\PROJECT.MVC\Views\OBJECTNAME folder(s) to the
PROJECT.MVC\Views folder in your VS project.

For WPF Projects
Open the Open the GeneratedCode_DoNotAddToProject-
Includes\MainWindowTables.txt file and add any lines of code to the RouteTo()
method within the MainWindows.xaml.cs file in your VS project.
Open the Open the GeneratedCode_DoNotAddToProject-
Includes\MainWindowViews.txt file and add any lines of code to the RouteTo()
method within the MainWindows.xaml.cs file in your VS project.
Copy the GeneratedCode\PROJECT.WPF\Views*.* file(s) to the
PROJECT.WPF\Views folder in your VS project.

SQL Compare

PDSC Developer Utilities V9 Usage 31
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

SQL Compare
When you run the SQL Compare utility, you put in two different connections string
that point to similar databases. For example, maybe you need to find out what you
changed in your QA database compared to your Production database. Click the
Compare button (shown in Figure 23) and a complete list of missing or changed
objects will appear in the message's tabs at the bottom of the screen.

Figure 23: Get missing objects from one database to another via the SQL Compare Utility.

XML Files
This screen is a list and a description of each XML file used in the PDSC Developer
Utilities.

PDSC Developer Utilities V9 Usage

32 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 24: A list of all XML files used in the PDSC Developer Utilities.

XML Files used by the Code Generator
Table 10 is a list of those XML files used by the Code Generation tool.

XML File Description

CodeGen-Controls Control template file names for different types of data, for different
technologies (MAUI, MVC, WPF, etc.)

CodeGen-
DataAnnotations

Data Annotations to be used for different data types

CodeGen-
FilesToDelete

Files to delete after code generation is complete for a template group

CodeGen-
FolderToCopy

Folders to copy after code generation is complete for a template group

CodeGen-
FoldersToDelete

Folders to delete after code generation is complete for a template group

CodeGen-
ReservedWords

File names that contain reserved words for different languages supported
by the code generator

CodeGen-
StandardFields

The template group list that appears on the Code Generator utility

XML Files

PDSC Developer Utilities V9 Usage 33
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

CodeGen-
TemplateGroups

Points to a CodeGen-TECH-*.xml file, other than the ones listed above.
These XML root within these XML files start is named
<CodeGenTemplates>.

Table 10: XML files used by the Code Generator utility.

CodeGen-TemplateGroups.xml File
The CodeGen-TemplateGroups.xml file has the following structure. A description of
each element is shown below.

<CodeGenTemplateGroups>
 <TemplateGroup>
 <GroupId>
 A Unique ID
 </GroupId>
 <DependentGroupIds>
 Other Groups This one Depends Upon
 </DependentGroupIds>
 <DisplayOrder>
 The display order for displaying on the screen
 </DisplayOrder>
 <GroupName>
 A Group Name
 </GroupName>
 <Description>
 A description of this group
 </Description>
 <LanguageCode>
 CSharp or VB.NET
 </LanguageCode>
 <TemplatesXmlFileName>
 The XML File Name that contains the templates to generate
 </TemplatesXmlFileName>
 <RequirePropertyChangedEvent>
 True or False
 </RequirePropertyChangedEvent>
 </TemplateGroup>
</CodeGenTemplateGroups>

XML Files for UI Technologies
All other CodeGen-*.xml files not described in the tables above are Code
Generation Template XML files. Below is the structure of one of the code generation
template files.

PDSC Developer Utilities V9 Usage

34 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

<CodeGenTemplates>
 <Template>
 <Name>
 A short description of what will be generated
 </Name>
 <TemplateFileName>
 A .txt file with the \Templates folder
 </TemplateFileName>
 <BaseClassName>
 Any base class name for the class in the template file name
 </BaseClassName>
 <OutputSubFolder>
 A sub-folder within the generation folder to place the output
 </OutputSubFolder>
 <OutputFileExtension>
 The extension for the generated file
 </OutputFileExtension>
 <OutputFilePrefix>
 Any prefix to add to the generated file
 </OutputFilePrefix>
 <OutputFileSuffix>
 Any suffix to add to the generated file
 </OutputFileSuffix>
 <UseClassNameAsFileName>
 If set to true, the currently generated class name is used as
the file name, plus any prefix and/or suffixes
 </UseClassNameAsFileName>
 <AppendToFile>
 If set to true, any tokens within the template are added to
the generated file.
 </AppendToFile>
 </Template>
</CodeGenTemplates>

Note that the <OutputSubFolder>, <OutputFilePrefix>, <OutputFileSuffix> elements
may contain the following special tokens:
{|NAMESPACE|} = Uses the namespace
{|NAMESPACE_CLEAN|} = Uses the namespace cleaned of all characters that
would make this an invalid file name
{|CLASS_NAME|} = Uses the class name

Other XML Files
Table 11 describes the XML files used by various tools within the PDSC Developer
Utilities.

XML File Description

ComputerCleaner-
FilesToRecycle

A list of files to recycle.

Code Generator: Template Tokens

PDSC Developer Utilities V9 Usage 35
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

ComputerCleaner-
FoldersToRecycle

A list of folders to recycle.

LanguageDataTypes A list of data types for each language.

Languages A list of programming languages supported by the PDSC Developer Utilities.

LanguageScopes A list of variable scopes used by each language.

ProjectCleaner-
SourceControlTags

A list of source control tags to look for within .SLN or .CSPROJ files to
remove during the Project Cleaning process.

PropertyGen-
Templates

A list of templates that can be used for Property Generation.

XmlFileList A list of all XML files within the PDSC Developer Utilities.

Table 11: Other XML files used by various PDSA Developer utilities.

Code Generator: Template Tokens
This section explains the various tokens and how they are used throughout the
various template files.

Looping Tokens
The following tokens are used to loop through columns and tables.

Token Description

{|FOR EACH COLUMN|} Loop through all columns for the table

{|FOR EACH COLUMN:IsEditable|} Loop through all columns marked for Editing

{|FOR EACH COLUMN:IsInsertable|} Loop through all columns marked for Inserting

{|FOR EACH COLUMN:IsPrimaryKey|} Loop through all primary key columns

{|FOR EACH COLUMN:IsNotPrimaryKey|} Loop through all columns that are not primary keys

{|FOR EACH COLUMN:IsForeignKey|} Loop through all foreign key columns

{|FOR EACH COLUMN: IsNotForeignKey |} Loop through all columns that are not foreign keys

{|FOR EACH COLUMN:IsDescriptionField|} Loop through all columns marked as Description

{|FOR EACH COLUMN:IsSearchField|} Loop through all columns marked as Search fields

{|FOR EACH COLUMN:DisplayInTable|} Loop through all columns marked for displaying in
table

{|FOR EACH COLUMN:DisplayInEdit|} Loop through all columns marked for displaying in
edit page

{|FOR EACH COLUMN:NoStandardFields|} Loop through all columns that are NOT standard
fields

PDSC Developer Utilities V9 Usage

36 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

{|FOR EACH COLUMN:StandardFields|} Loop through all columns that are standard fields

{|FOR EACH COLUMN:
StandardFieldIsInsertable|}

Loop through all columns that are standard fields
and are marked as insertable

{|FOR EACH COLUMN:
StandardFieldIsEditable|}

Loop through all columns that are standard fields
and are marked as editable

{|FOR EACH TABLE|} Loop through all selected tables

{|FOR EACH VIEW|} Loop through all selected views

{|END_LOOP|} Each of the above must be terminated with this.
Note, you can NOT nest {|FOR EACH |} tokens

Table 12: Looping Tokens

Remove Tokens
The following tokens can be used to remove blocks of code if a certain condition is
not matched.

Token Description

{|REMOVE_WHEN:IsTable|} Removes the block of code when the current
object being generated is a table

{|REMOVE_WHEN:IsView|} Removes the block of code when the current
object being generated is a view

{|REMOVE_WHEN:NoStandardFields|} Removes the block of code when there are no
standard fields in the table

{|REMOVE_WHEN:NoForeignKeys|} Removes the block of code when there are no
foreign keys in the table

{|REMOVE_WHEN:IsAutoIncrement|} Removes the block of code when the Primary key
is and IDENTITY property

{|REMOVE_WHEN:IsNotAutoIncrement|} Removes the block of code when the Primary key
is NOT an IDENTITY property

{|REMOVE_WHEN:IsPrimaryKeyInteger|} Removes the block of code when the Primary key
is an Integer

{|REMOVE_WHEN:IsPrimaryKeyNotInteger|} Removes the block of code when the Primary key
is NOT an Integer

{|REMOVE_WHEN:IsPrimaryKeyGuid|} Removes the block of code when the Primary key
is a unique identifier

{|REMOVE_WHEN:IsPrimaryKeyNotGuid|} Removes the block of code when the Primary key
is NOT a unique identifier

Code Generator: Template Tokens

PDSC Developer Utilities V9 Usage 37
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

{|REMOVE_WHEN:IsColumnBoolean|} Removes the block of code when the current
column is a Boolean data type

{|REMOVE_WHEN:IsColumnNotBoolean|} Removes the block of code when the current
column is NOT a Boolean data type

{|REMOVE_WHEN:IsColumnDateTime|} Removes the block of code when the current
column is a date/time data type

{|REMOVE_WHEN:IsColumnNotDateTime|} Removes the block of code when the current
column is NOT a date/time data type

{|REMOVE_WHEN:IsColumnString|} Removes the block of code when the current
column is a string data type

{|REMOVE_WHEN:IsColumnNotString|} Removes the block of code when the current
column is NOT a string data type

{|REMOVE_WHEN:IsColumnUniqueIdentifier|} Removes the block of code when the current
column is a unique identifier (Guid) data type

{|REMOVE_WHEN:
IsColumnNotUniqueIdentifier |}

Removes the block of code when the current
column is NOT a unique identifier (Guid) data
type

{|REMOVE_WHEN:OnlyOnePrimaryKey|} Removes the block of code when there is only 1
primary key column

{|REMOVE_WHEN:Https|} Removes the block of code when there the Use
HTTPS for Web API project is true.

{|REMOVE_WHEN:NoHttps|} Removes the block of code when there the Use
HTTPS for Web API project is false.

<|REMOVE_WHEN:net7.0|> Removes the block of code when the selected
.NET Version is 7.0

<|REMOVE_WHEN:net8.0|> Removes the block of code when the selected
.NET Version is 8.0

{|END_REMOVE|} Each of the above must be terminated with this.
NOTE: you can NOT nest {|REMOVE WHEN |}
tokens
NOTE: you can NOT place {|REMOVE WHEN |}
blocks within any of the loop tokens

Table 13: Remove Tokens.

Column Tokens
The following tokens are used as you are looping through the list of columns. All
tokens are enclosed within <|TOKEN|>, and sometimes can be enclosed with
{|TOKEN|}.

PDSC Developer Utilities V9 Usage

38 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

Token Description

<|MAX_LENGTH|> and {|MAX_LENGTH|} Returns the maximum length marked for a
string column in SQL Server

<|PRECISION|> and {|PRECISION|} Returns the numeric precision for a column
in SQL Server

<|SCALE|> and {|SCALE|} Returns the numeric scale for a column in
SQL Server

<|DATETIME_PRECISION|> and
{|DATETIME_PRECISION|}

Returns the datetime precision for a
column in SQL Server

<|DATA_TYPE|> and {|DATA_TYPE}} Returns the data type in SQL Server

<|COLUMN_NAME|> and {|COLUMN_NAME|} Returns the column name in SQL Server

<|PRIMARY_KEY_FIELD|> and
{|PRIMARY_KEY_FIELD|}

Returns the primary key column name in
SQL Server

<|PRIMARY_KEY_FIELD_LABEL|> Returns the label for the primary key
column name

<|PROPERTY_NAME_WITH_VALUE_IF_NULL|> Adds a ".Value" after the property name if
the column is nullable

<|FIRST_SORT_FIELD|> Returns the first sort field property name
in the table

<|DESCRIPTION_FIELD|> Returns the first description field property
name in the table

<|DESCRIPTION_FIELD_LOWER_FIRST_LETTER|> Returns the description property for the
current column with the first letter as
lower-case

<|LANGUAGE_DATA_TYPE|> Returns the data type for the current
column for the selected template language
and it could have the symbol for a nullable
data type if the column is marked as
nullable in the database.

<|LANGUAGE_DATA_TYPE_NON_NULLABLE|> Returns the data type for the current
column for the selected template language
without any nullable symbol

<|LANGUAGE_DATA_TYPE_NULLABLE|> Returns the data type for the current
column for the selected template language
with the nullable symbol

<|NULLABLE_CHARACTER_IF_NULLABLE|> Returns the nullable character for the
selected template language unless the
column is a string data type.

<|NULLABLE_CHARACTER|> Returns the nullable character if the
column is NOT a string data type.

Code Generator: Template Tokens

PDSC Developer Utilities V9 Usage 39
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

<|HTML_INPUT_TYPE|> Returns the text value to set on the <input
type="INPUT TYPE". Valid values are
based on the Is* properties of the column.
IsDateTime="datetime-local"
IsTime="time"
IsNumeric="number"
IsEmail="email"
IsTelephone="tel"
IsPassword="password"
Default="text"

<|PK_PROPERTY_NAME|> Returns the property name for the primary
key field for a table

<|PK_LANGUAGE_DATA_TYPE|> Returns the data type (and possibly
nullable type) of the primary key field for a
table for the selected template language

<|PK_LANGUAGE_DATA_TYPE_NEVER_NULLABLE|> Returns just the data type of the primary
key field for a table for the selected
template language

<|PRIVATE_FIELD_PREFIX|> Returns the specified backing field prefix
such as an underscore

<|PROPERTY_NAME|> or {|PROPERTY_NAME|} Returns the property name for the current
column

<|PROPERTY_NAME_LOWER_FIRSTCHAR|> Returns the property name with the first
character as lower-case for the current
column

<|PROPERTY_NAME_ALL_LOWER|> Returns the lower-case version of the
property name for the current column

<|PROPERTY_LABEL|> Returns the Label for the current column

<|PROPERTY_SEARCH_PATTERN|> Returns the Search Pattern used in the
View Model templates. Comes from
LanguageDataType XML File.

<|PROPERTY_SEARCH_IF|> Used in the Repository template to help
with building the Where() clause.

<|PROPERTY_INITIALIZER|> Returns the Property Initializer that can be
used for initializing property values for the
data type of the current column. Comes
from LanguageDataType.xml File

<|PROPERTY_INITIALIZER_STATEMENT|> Returns the Property Initializer Statement
that can be used for initializing property
values for the data type of the current
column. Comes from
LanguageDataType.xml File

PDSC Developer Utilities V9 Usage

40 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

<|PROPERTY_SETVALUE_STATEMENT|> Returns the Property SetValue Statement
that can be used in the SetValue() method
of a view model for setting the changes to
the data from the database. Comes from
LanguageDataType.xml File

<|STD_PROPERTY_INITIALIZER|> Returns the Initializer that can be used for
initializing property values for the data
type of a standard field column. Comes
from CodeGen-StandardFields.xml File

<|STD_PROPERTY_INITIALIZER_STATEMENT|> Returns the Initializer Statement that can
be used after the {get;set;} statement to
initialize the property. Comes from
CodeGen-StandardFields.xml File

<|STD_PROPERTY_MODIFY|> Returns the Modifier that can be used to
set the value of a standard field in the
Update() method. Comes from CodeGen-
StandardFields.xml File

<|SEARCH_METHOD_PARAMS|> Used in controllers to return a comma-
delimited list of those parameters in the
Search() method that match to the
properties in the Search class.

{|DATA_ANNOTATION:[AnnotationName]|} Returns a single Data Annotation by
looking at the Name and Language
elements in the CodeGen-
DataAnnotations.xml file

Table 14: Column Tokens.

Table/View Tokens
The following tokens are used for table/view information, or as you are looping
through the list of tables/views.

Token Description

<|TABLE_DATA_ANNOTATION|> Returns the data annotation to apply to an entity
class for use with the Entity Framework

<|NAMESPACE|> and {|NAMESPACE|} Returns the Namespace specified in the code
generator

<|NAMESPACE_CLEAN|> Returns the Namespace stripped of all commas,
periods, or any other characters that would be an
invalid name.

<|CLASS_NAME|> and {|CLASS_NAME|} Returns the Class Name property for the current
table

<|CLASS_NAME_ALL_LOWER|> Returns the Class Name property for the current
table as all lower-case letters

Code Generator: Template Tokens

PDSC Developer Utilities V9 Usage 41
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

<|CLASS_NAME_SINGULAR|> Returns the Singular version of the Class Name for
the current table

<|CLASS_NAME_PLURAL|> Returns the Pluralized version of the Class Name for
the current table

<|CLASS_DESC_SINGULAR|> Returns the Singular version of the Description for
the current table

<|CLASS_NAME_SINGULAR_ALL_LOWER|> Returns the Singular version of the Description for
the current table as all lower-case letters

<|CLASS_DESC_PLURAL|> Returns the Pluralized version of the Description for
the current table

<|CATALOG_NAME|> Returns the Catalog for the current table

<|SCHEMA_NAME|> Returns the Schema for the current table

<|TABLE_NAME|> or <|VIEW_NAME|> Returns the Table or View name for the current
table/view

<|SELECT_SQL|> Returns the SQL used to select all columns for the
current table

Table 15: Table Tokens.

Foreign Key Tokens
The following tokens are used for foreign key table information.

Token Description

<|FK_REPOSITORIES_CONSTRUCTOR|> Returns the FK table repository list for DI

<|PK_TABLE_CLASS_NAME_SINGULAR|> Returns the Class Name for the FK table as a
singular.

<|PK_TABLE_CLASS_NAME_PLURAL|> Returns the Class Name for the FK table as a
plural.

<|PK_TABLE_PK_PROPERTY_NAME|> Returns the primary key property name for the
FK table. This token is used in a loop.

<|FK_TABLE_DESC_FIELD_PROPERTY_NAME|> Returns the description field property name for
the FK table.

<|FK_TABLE_PK_FIELD_PROPERTY_NAME|> Returns the primary key field property name
for the FK table for the currently selected table
and column.

Table 16: Foreign Key Tokens.

Code Generation Template Tokens
The following tokens are used for information about the current template.

PDSC Developer Utilities V9 Usage

42 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

Token Description

<|BASE_CLASS_NAME|> Returns the value from the BaseClassName element
from current template XML file. These files generally
follow the pattern "CodeGen-?.xml" file

<|OUTPUT_PREFIX|> Returns the value from the OutputFilePrefix element
from current template XML file. These files generally
follow the pattern "CodeGen-?.xml" file

<|OUTPUT_SUFFIX|> Returns the value from the OutputFileSuffix element
from current template XML file. These files generally
follow the pattern "CodeGen-?.xml" file

<|OUTPUT_FILE_EXTENSION|> Returns the value from the OutputFileExtension element
from current template XML file. These files generally
follow the pattern "CodeGen-?.xml" file

<|PROPERTIES|> Generates all properties from a tables' columns for use
with the Entity Framework entity class. These properties
are generated using all the appropriate data annotations

<|PROPERTIES_STD_FIELDS_ONLY|> Generates all standard field properties from a tables'
columns for use with the Entity Framework entity class.
These properties are generated using all the appropriate
data annotations

<|PROPERTIES_NO_STD_FIELDS|> Generates all properties from a tables' columns, except
for the standard fields, for use with the Entity
Framework entity class. These properties are generated
using all the appropriate data annotations

<|DB_CONTEXT|> The DbContext class name as specified in the code
generator

<|CONNECTION_STRING|> Returns the Connection string as specified in the code
generator

<|GEN_PATH|> Returns the path the code is being generated to

<|APPLICATION_NAME|> Returns the application name input by the user

<|APPLICATION_NAME_NO_SPACES|> Returns the application name input by the user with all
spaces stripped out

<|DATABASE_NAME|> Returns the database name that is extracted from the
connection string

Table 17: Code Generation Tokens.

Screen Generation Tokens
The following tokens are used for screens while generating code.

Code Generator: Template Tokens

PDSC Developer Utilities V9 Usage 43
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

Token Description

<|GRID_ROW_AUTO|> Returns "Auto,Auto,.." for however many rows are
needed for a detail screen.

<|GRID_ROW_AUTO_TABLE|> Returns "Auto,Auto,.." for however many rows are
needed for a display in a table.

<|GRID_ROW_AUTO_SEARCH|> Returns "Auto,Auto,.." for however many rows are
needed for the search area in the list view.

<|GRID_ROW|> Returns the grid row number and increments the row
number

<|GRID_ROW_FIRST|> Returns the grid row number, but does not increment the
row number

<|GRID_ROW_SECOND|> Returns the grid row number and increments the row
number

<|GRID_ROW_INCREMENT|> Just increments the row number

<|GRID_ROW_RESET|> Resets the row number to 0

<|GRID_ROW_RESET:n|> Resets the row number to the value n after the colon.

Table 18: Screen Generation Tokens.

Miscellaneous Generation Tokens
The following tokens are used for various functionality while generating code.

Token Description

<|CRLF|> and {|CRLF|} Returns a carriage return, line feed

<|DOT_NET_VERSION|> Inserts the moniker for the .NET version selected for
generation

<|DOT_NET_VERSION:NuGetPackage|> Looks for an <element> that matches the
'NuGetPackage' after the colon and returns the version
number to use for that package when creating the
projects

<|LOGICAL_AND|> Returns single ampersand (&) after the first time
through a loop, and following a
<|LOGICAL_AND_RESET|>

<|LOGICAL_AND_RESET|> Resets "<|LOGICAL_AND|>" token to an empty string

<|LOGICAL_OR|> Returns single vertical bar (|) after the first time
through a loop, and following a
<|LOGICAL_OR_RESET|>

<|LOGICAL_OR_RESET|> Resets "<|LOGICAL_OR|>" token to an empty string

<|CONDITIONAL_AND|> Returns double ampersands (&&) after the first time
through a loop, and following a
<|CONDITIONAL_AND_RESET|>

PDSC Developer Utilities V9 Usage

44 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

<|CONDITIONAL_AND_RESET|> Resets "<|CONDITIONAL_AND|>" token to an empty
string

<|CONDITIONAL_OR|> Returns double vertical bars (||) after the first time
through a loop, and following a
<|CONDITIONAL_OR_RESET|>

<|CONDITIONAL_OR_RESET|> Resets "<|CONDITIONAL_OR|>" token to an empty
string

<|COMMA|> Returns a comma (,) after the first time through a
loop, and following a <|COMMA_RESET|>

<|COMMA_RESET|> Resets "<|COMMA|>" token to an empty string

<|AND|> Returns the word "And" after the first time through a
loop, and following a <|AND_RESET|>

<|AND_UPPER|> Returns the word "AND" after the first time through a
loop, and following a <|AND_RESET|>

<|AND_RESET|> Resets "<|AND|>" token to an empty string

<|OR|> Returns the word "Or" after the first time through a
loop, and following a <|OR_RESET|>

<|OR|> Returns the word "OR" after the first time through a
loop, and following a <|OR_RESET|>

<|OR_RESET|> Resets "<|OR|>" token to an empty string

<|REMOVE_LINE|> Do not add the current line to the output

<|SP_PREFIX|> Returns the stored procedure prefix

<|SOLUTION_GUID|> Returns a new Guid

{|INCLUDE:FILENAME|} Allows you to include one template file into the
specified location of another template file. This
included template file is inserted into the location after
all other templates have been generated.

<|HARD_CODED_DATA|> Iterates over all rows in a table and generates a
List<T> of all data.

<|NO_HTTPS|> If Use HTTPS flag is set to false, "--no-https" is added
to the .cmd file that generates the Web API project.

Table 19: Miscellaneous Generation Tokens.

Generated Solutions
When the PDSC Developer Utilities generates code, you will find the solution is
made up of several assemblies as shown in Figure 25.

Generated Solutions

PDSC Developer Utilities V9 Usage 45
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

Figure 25: Sample of some generated solutions.

Table 20 describes each of the generated projects within the solution.

Project Description

.DataLayer Contains the Entity Framework DbContext class, and all repository classes.

.EntityLayer Contains the entity classes that map to each table in your data store.

.ViewModelLayer Contains the view model classes that use the repository and entity classes to
build the views for your UI.

.WPF / .MVC /

.MinWebAPI /

.MAUI

These are the specific UI classes and views needed to create your application.
These classes/views in this application should only use the View Model and
Entity Classes and not rely on data layer except to inject the appropriate
concrete implementation IRepository class into the View Model.

PDSC.Common This assembly contains base classes that your repository, entity, router,
controllers, and view model classes inherit from. It contains interfaces that
many of these classes implement. In addition, there are some generic classes
that help you with application development.

PDSC.MAUI This class library is for any common classes that can be used within any .NET
MAUI application.

PDSC.Web This class library is for any common classes that can be used within any
ASP.NET web application.

PDSC.WPF This class library is for any common classes that can be used within any WPF
application.

Table 20: A list of projects in the generated solutions.

PDSC Developer Utilities V9 Usage

46 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

Reusable Libraries
The ViewModelLayer, DataLayer, and EntityLayer are designed to be class libraries
that can be reused with any UI layer you wish (Figure 26). You should not put
references to any UI-specific classes or controls within any of these layers to ensure
they can be reused over and over.

Figure 26: The ViewModelLayer, DataLayer, and EntityLayer assemblies are designed to be
reusable.

Dependency Injection
Wherever possible, take advantage of Dependency Injection (DI) to inject concrete
implementations of functionality (Figure 27). This ensures ultimate reusability of
view models and repositories.

Figure 27: Use DI to inject services.

PDSC Libraries

PDSC Developer Utilities V9 Usage 47
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

As an example, a .NET MAUI project the Repository classes that use API calls to a
Web Server are injected into View Model classes. In the Web API project, the
Repository classes that use Entity Framework are injected into the same View
Model classes as shown in Figure 28.

Figure 28: A .NET MAUI application injects Repository classes that use API calls, while a Web
API project uses Repository classes that use EF to manipulate data.

PDSC Libraries
The PDSC Developer Utilities generates some common libraries that are meant to
be used in any of your applications. The PDSC.Common library is a UI-agnostic
library with classes designed to be used in any type of application. The
PDSC.Common.MAUI library contains classes that can be utilized in any .NET
MAUI application. The PDSC.Common.Web library contains classes that can be
utilized in any ASP.NET application. The PDSC.Common.WPF library contains
classes that can be utilized in any WPF application. The following sections describe
each of these libraries.

PDSC Developer Utilities V9 Usage

48 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

PDSC Common Library
This assembly contains base classes that your repository, entity, router, controllers,
and view model classes inherit from. It contains interfaces that many of these
classes implement. In addition, there are some generic classes that help you with
application development.

Interfaces
Table 21 describes the interfaces defined in this class library and what they are
used for.

Class Name Description

IRepository All repository classes should inherit from this class.

IViewRepository All repository classes that target Views in a database should inherit
from this class.

Table 21: Various interfaces used in applications.

Miscellaneous Classes
Table 22 describes many of the classes you can use when writing applications.

Class Name Description

DataResponseBase A base class for the DataResponse class. Contains properties such as
StatusCode, StatusMessage, RowsAffected, ResultMessage,
LastException, and LastErrorMessage.

DataResponse This class inherits from the DataResponseBase class and adds an
additional property, Data. This Data property is where the payload is
placed into when returning data from a Web API call. This Data, plus
the other properties from the DataResponseBase class provide all the
information needed to determine if a call was successful or not.

GenericsHelpers Contains a static method to generically change one type into another.

HttpClientRepositoryBase This class is a wrapper around the HttpClient class and is used to
make Web API calls easier. All your RepositoryAPI classes should
inherit from this class.

JsonHelper Contains a static method to serialize any object into a string.

JWTSettings This class holds the settings necessary for working with JSON Web
Tokens (JWT).

PDSCException This class holds properties related to any type of exception that can
happen. If the exception is a database exception, there are many
additional properties just related to the database exception.

PDSCExceptionManager This class helps populate the PDSCException object with data around
an exception. This is useful for logging exceptions.

PDSC Libraries

PDSC Developer Utilities V9 Usage 49
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

ValidationError Class used to convert a Dictionary<string, string[]> that comes from
an MVC validation into a collection of ValidationMessage objects.

ValidationException Class that inherits from the Exception class and it used in a catch
block when a validation exception is thrown.

ValidationMessage A class to hold the property name and validation message for why the
property value fails its validation.

Table 22: Various classes used throughout almost all applications.

Base Classes
Table 23 lists the base classes you should ultimately be inheriting from within the
classes in your application.

Class Name Description

CommonBase Almost all classes in your application will eventually inherit from this class. It
contains properties that are very useful such as LastException,
LastErrorMessage, UserName and many others.

RepositoryBase Contains a RowsAffected (int) and ResponseObject (DataResponseBase). All
your Repository classes should inherit from this class.

SearchBase All search classes should inherit from this class.

SettingsBase This class holds the common properties that are normally read in from the
appsettings.json file of your application. Each of your application should have
a settings class that inherits from this class. You can then add on additional
properties as needed for your application.

ViewModelBase All view models should inherit from this class, unless the view model classes
work with Repository classes that use the Entity Framework. Then those view
model classes should inherit from the ViewModelEFBase class.

Table 23: The set of base classes that other classes in your application inherit from.

PDSC Common MAUI Library
This class library is for any common classes that can be used within any .NET
MAUI application. Table 24 lists the classes that you will find useful when
developing .NET MAUI applications.

Class Name Description

InvertedBoolConverter A converter to change a true value to a false, or vice-versa.

Table 24: The set of classes that can be used in any .NET MAUI application.

PDSC Developer Utilities V9 Usage

50 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

PDSC Common Web Library
This class library is for any common classes that can be used within any ASP.NET
web application. Table 25 lists the classes that you will find useful when developing
ASP.NET Web applications.

Class Name Description

RouterBase All Minimal Web API router classes should inherit from this class.

Table 25: The set of classes that can be used in any ASP.NET web application.

PDSC Common WPF Library
This class library is for any common classes that can be used within any WPF
application. Table 26 lists the classes that you will find useful when developing WPF
applications.

Class Name Description

BooleanToVisibilityConverter Call this converter to change a true value to Visible and a
false value to Collapsed.

BooleanToVisibilityHiddenConverter Call this converter to change a true value to Visible and a
false value to Hidden.

InvertedBoolConverter A converter to change a true value to a false, or vice-versa.

Table 26: The set of classes that can be used in any WPF application.

This library also contains a set of standard colors and styles as described in Table
27.

XAML File Description

Colors.xaml A set of standard colors you can use in your WPF
applications.

Styles A set of standard styles you can use in your WPF
applications.

Table 27: A standard set of resources to be used in any WPF application.

Generated Application Classes
When you use the PDSC Developer Utilities code generator, there are many
classes generated for you. The following section describes the set of classes
generated and what they inherit from.

Generated Application Classes

PDSC Developer Utilities V9 Usage 51
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

Entity Classes and Inheritance Chain
An entity class is used to supply a mapping between a table in a database with a
property in a C# class (Table 28).

Class Name Description

Person,
Customer,
Etc.

Your entity class that contains a property for each column in a Person, Customer
or other table in your data store.

This class inherits from the AppEntity class.

AppEntity A class in your EntityLayer that all your entity classes inherit from. This class
inherits from the CommonBase class. This makes it easy to add properties or
methods that you might need for just this specific application. A good example
would be if you have a set of common fields on each table such as InsertDate,
InsertName, UpdateDate, and UpdateName. Create the corresponding properties
in this class so all your entity classes do not need to implement each of these.

Table 28: The inheritance chain for entity classes.

EF Repository Classes and Inheritance Chain
The Entity Framework Repository classes generated are what you use to read from
any data store supported by the Entity Framework. The inheritance chain is
described in Table 29.

Class Name Description

PersonRespository,
CustomerRespository,
Etc.

This class contains methods to get all records, get a single record, and
search for records. It also contains methods to count all records, or
count records based on search criteria. This class also has methods for
inserting, updating and deleting records. All methods in this class use the
Entity Framework to access a data store.

This class inherits from the RepositoryBase class and implements the
IRepository interface.

RepositoryBase This base class provides properties and methods to support all the
functionality in your repository classes. The RepositoryBase class inherits
from the CommonBase class.

IRepository<datatype,
entity, entitySearch>

This interface ensures all repository classes adhere to the same set of
properties and methods.

Table 29: The inheritance chain for Entity Framework repository classes.

PDSC Developer Utilities V9 Usage

52 PDSC Developer Utilities V9 Usage
Copyright © 2021-23 by Paul D. Sheriff Consulting

All rights reserved worldwide. Reproduction is strictly prohibited.

API Repository Classes and Inheritance Chain
If your front-end UI (WPF, .NET MAUI, Blazor, etc.) requires you to interact with
data via Web API calls, generate the API Repository classes. Table 30 describes
the classes generated and the inheritance chain.

Class Name Description

PersonRespositoryAPI,
CustomerRespositoryAPI,
Etc.

This class contains methods to get all records, get a single record, and
search for records. It also contains methods to count all records, or
count records based on search criteria. This class also has methods for
inserting, updating and deleting records. All methods in this class use
the HttpClient class to call a Web API to perform all the functionality
required to work with the data.

This class inherits from the HttpClientRepositoryBase class and
implements the IRepository interface.

HttpClientRepositoryBase This class is a wrapper around the .NET HttpClient class to help your
RepositoryAPI classes make the Web API calls.

IRepository<datatype,
entity, entitySearch>

This interface ensures all repository classes adhere to the same set of
properties and methods.

Table 30: The inheritance chain for Web API repository classes.

View Model Classes and Inheritance Chain
All communication with your data store, whether through EF or API calls, should be
done through View Model classes. The view model classes are designed to accept
an IRepository interface through Dependency Injection. Table 31 describes the view
model classes and the inheritance chain.

Class Name Description

PersonViewModel,
CustomerViewModel,
etc.

The view model class is used to wrap up all functionality for working with
pages/screens in your application. The data supplied to the view model
comes from whichever Repository class is injected into this class.

This class inherits from the AppViewModel class, and implements the
IViewModel interface.

AppViewModel This class is used in case you need to add specific functionality just for this
one application. This class inherits from the ViewModelBase class. The
ViewModelBase class inherits from the CommonBase class.

IViewModel This interface ensures all view model classes adhere to the same set of
properties and methods.

Table 31: The inheritance chain for view model classes.

Summary

PDSC Developer Utilities V9 Usage 53
Copyright © 2021-23 by Paul D. Sheriff Consulting
All rights reserved. Reproduction is strictly prohibited.

Summary
The PDSC Developer Utilities increases your productivity while developing your
applications. We hope you enjoy using this product.

	PDSC Developer Utilities - Version 9
	Overview of the Developer Utilities
	Computer Cleaner
	Disclaimer Tab
	Selected Folders to Recycle Tab
	Specific Files to Recycle Tab
	.NET Information Tab
	Clean

	Project Cleaner
	Folder to Clean
	Cleaning Options
	Source Control Tags

	Property Generator
	The Supplied Templates
	Add Your Own Property Generator Templates
	Property Generator Tokens
	Other XML files for the Property Generator

	JSON Generator
	Step 1: SQL / Select Object to Generate
	Step 2: Generate
	View the JSON Output

	XML Generator
	Step 1: SQL / Select Object to Generate
	Step 2: Generate
	XML Output
	XSD Output

	Code Generator
	Code Generator Limits
	Step 1: Select Template(s)
	Step 2: Tables/Views to Generate
	Step 3: View Columns
	Step 4: Generate
	Adding a New Generated Table to Your Project
	All Applications
	For .NET MAUI Applications
	For Web API (MVC) Projects
	For Minimal Web API Projects
	For MVC Website Projects
	For WPF Projects

	SQL Compare
	XML Files
	XML Files used by the Code Generator
	CodeGen-TemplateGroups.xml File
	XML Files for UI Technologies
	Other XML Files

	Code Generator: Template Tokens
	Looping Tokens
	Remove Tokens
	Column Tokens
	Table/View Tokens
	Foreign Key Tokens
	Code Generation Template Tokens
	Screen Generation Tokens
	Miscellaneous Generation Tokens

	Generated Solutions
	Reusable Libraries
	Dependency Injection

	PDSC Libraries
	PDSC Common Library
	Interfaces
	Miscellaneous Classes
	Base Classes

	PDSC Common MAUI Library
	PDSC Common Web Library
	PDSC Common WPF Library

	Generated Application Classes
	Entity Classes and Inheritance Chain
	EF Repository Classes and Inheritance Chain
	API Repository Classes and Inheritance Chain
	View Model Classes and Inheritance Chain

	Summary

