

Chapter 3Build a Credit Card Entry Page
using Angular – Part 3

In the last two articles, you built an HTML page (Figure 1) to enter credit card
information. You have the drop-down lists loaded with data coming from a
Web API service. Your last tasks for this page are to validate the data entered
is correct, both on the client and the server, display any validation messages,
and finally, save the credit card data into the CreditCard table in your SQL
Server database.
You are going to build custom directives in Angular to validate the input on
the client side. A new method is going to be added to the view model class to
save the credit card data. An additional method is added to the EF classes to
validate the data on the server-side. If validation errors are detected, those
errors are serialized and sent back to the client for display in an unordered
list. This article will show you how to accomplish each of these tasks.

Build a Credit Card Entry Page using Angular

3-2 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 1: The Credit Card data entry page

Save Credit Card Data
The credit card table has a primary key field named CreditCardId. This field is
a property in the CreditCard class generated by the Entity Framework. In the
first article in this series, a hidden input field was created within the <form>
tag to hold the CreditCardId field. If this value is null or an empty Guid, you
know you need to insert the entered credit card data. If the value is a real
Guid, then you know you just want to update the entered credit card data.
In the ViewModelLayer project, open the CreditCardViewModel class and add
a SaveData() method. This class has an Entity property which is an instance
of the CreditCard class. When the data is submitted by the user, the Entity

 Add CreditCardController

Build a Credit Card Entry Page using Angular 3-3
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

property of the view model class is filled in by the controller. If the
CreditCardId property is filled in with a valid Guid, assume that the credit card
data already exists in the database and set the state of the current entity in
the EF data context to modified. When the SaveChanges method is called
on the data context, an INSERT or an UPDATE statement is sent to the SQL
Server.

public void SaveData() {
 PTC db = null;

 Messages = null;
 try {
 db = new PTC();

 // Determine whether to Insert or Update
 if (Entity.CreditCardId == null ||
 Entity.CreditCardId == Guid.Empty) {
 // Set new Guid for Primary Key
 Entity.CreditCardId = Guid.NewGuid();
 db.CreditCards.Add(Entity);
 }
 else {
 db.Entry(Entity).State =
 System.Data.Entity.EntityState.Modified;
 }
 db.SaveChanges();
 }
 catch (DbEntityValidationException ex) {
 IsValid = false;
 Messages = ex.EntityValidationErrors.ToList();
 }
}

Add CreditCardController
Go back to the CreditCardEntry project and locate the Controllers folder.
Right mouse click on this folder and select Add | Web API Controller Class
(v2.1). If this option does not appear in your drop down menu, select Add |
New Item and choose it under the Web | Web API templates. Set the name of
this controller to CreditCardController. Delete all the code in this controller
and add a Post method as shown below:

Build a Credit Card Entry Page using Angular

3-4 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

[HttpPost()]
public IHttpActionResult Post(
 CreditCard card) {
 IHttpActionResult ret = null;
 CreditCardViewModel vm =
 new CreditCardViewModel();
 ModelStateDictionary Messages =
 new ModelStateDictionary();

 // Assign client-side credit card object
 // to view model entity
 vm.Entity = card;

 // Attempt to save data
 vm.SaveData();
 if (vm.IsValid) {
 ret = Created<CreditCard>(
 Request.RequestUri +
 vm.Entity.CreditCardId.ToString(),
 vm.Entity);
 }
 else {
 if (vm.Messages.Count > 0) {
 // Validation errors
 foreach (var msgs in vm.Messages) {
 foreach (var item in msgs.ValidationErrors) {
 Messages.AddModelError(item.PropertyName,
 item.ErrorMessage);
 }
 }

 ret = BadRequest(Messages);
 }
 }

 return ret;
}

Add some using statements to the top of this controller file to resolve
references to the various classes used in this method.

using DataLayer;
using ViewModelLayer;
using System.Web.Http.ModelBinding;

This Post method takes the CreditCard object passed from the UI and places
it into the Entity property of the view model class. Next it calls the SaveData
method you just wrote to either insert or update the data into the CreditCard
table. If the view model’s IsValid property is set to true, set the return value to
the result of the Created method. This method returns the URI where the front
end can retrieve the new entity. The Created method also returns the
complete entity object back to the front end. You should use this method to

 Save Data from Angular

Build a Credit Card Entry Page using Angular 3-5
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

pass back any property data that may have changed because of the insert or
update into the table.
If the IsValid property is set to a false value, then check to see if there are
messages in the Messages property of the view model class. If there are you
loop through the messages in the Messages property and add them as a
model error in a ModelStateDictionary. This dictionary can be passed as a
payload from the BadRequest method. In your Angular controller, loop
through these model state dictionary objects and retrieve the error messages
and display them on the UI to your user. Later in this article you add validation
failure messages to this Messages property.

Save Data from Angular
Now that you have the back-end services written to save the credit card data
to your database table, it is now time to write the Angular code to clean up the
data on the front end and call the Post method in your CreditCard Web API
controller.

Add Clean Up Data Function
Before I pass any data from the client-side to the server-side, I always have a
little routine I call named cleanUpData. This function can clean up dates
(which can be an issue in Internet Explorer), it can take selected values from
drop-downs and move it into the actual entity object to pass to the server. It
can also do any other clean up that you may find necessary. Open the
creditcard.controller.js file and add a function named cleanUpData.

function cleanUpData() {
 // Get card type
 vm.creditCard.cardType =
 vm.selectedCardType.cardType;
 // Get expiration month
 vm.creditCard.expMonth =
 vm.selectedMonth.monthNumber;
}

In the cleanUpData function for the credit card page, take the selected card
type from the vm.selectedCardType.cardType property and put it into the
vm.creditCard.cardType property. Next, take the selected month number from
the vm.selectedMonth.monthNumber property and put it into the
vm.creditCard.expMonth property. You are going to pass the vm.creditCard

Build a Credit Card Entry Page using Angular

3-6 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

object to the server and this methods retrieves the data from the appropriate
selected objects and puts that data into the appropriate properties in the
vm.creditCard object.

Add Insert Data Function
Add a function named insertData to your creditcard.controller.js. Call the
cleanUpData function you just created. Call the dataService.post function to
call the Post method on your server. Pass to the post function the URL where
your post method is located and the vm.creditCard object which contains the
data your user entered on the credit card page. If the call to the Post method
is successful, get the result.data and set it back into the vm.creditCard object.
In case the server updates any of the fields during the insert or update
statement, you want to be able to reflect that data back on the page for the
user. However, in this function, the user won’t see it as you are going to
navigate back to the home page using $location service. However, if you
were going to stay on this page for some reason, it would be good to display
the updated values to the user.

function insertData() {
 // Clean up object before sending to server
 cleanUpData();

 // Post credit card info to server
 dataService.post(
 "/api/CreditCard", vm.creditCard)
 .then(function (result) {
 // Update credit card object
 vm.creditCard = result.data;

 // Redirect back to home page
 $location.path("/");

 }, function (error) {
 handleException(error);
 });
}

Add Save Click Function
The save button on your credit card HTML page has a ng-click event which
calls a function named saveClick. You pass in the name of the <form> to this
function to test the validity of validation you created on the form. You are
going to learn about validation a little later in this article. For now, just write
the saveClick as shown below.

 Add Angular Validation

Build a Credit Card Entry Page using Angular 3-7
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

function saveClick(creditCardForm) {
 if (creditCardForm.$valid) {
 vm.uiState.isMessageAreaHidden = true;
 creditCardForm.$setPristine();
 insertData();
 }
 else {
 vm.uiState.isMessageAreaHidden = false;
 }
}

If all the controls pass Angular validation the $valid property is set to true on
the creditCardForm object. To make sure no further messages are displayed
on the web page, call the $setPristine function. The $setPristine function sets
the internal flags on the Angular credit card model to a value which is
consistent with the first time you entered the page. Call the insertData
function to post the data entered to the Web API controller.
All functions you need to call from the HTML page must be registered on the
$scope object. Add a blank line just below your variable declarations and
before the call to the loadCardTypes function and add the following lines of
code.

// Expose public functions
vm.saveClick = saveClick;

Run the credit card page and enter some data, click on the save button, and
you should be able to look in the CreditCard table and see the data you
entered.

Add Angular Validation
For each field on your web page, decide which fields to perform validation
upon. Determine the type of validation you can accomplish with the attributes
available in HTML/HTML5 and Angular. In the table below is a list of the
attributes you can use with Angular validation.

Attribute Type Description

required HTML The field must contain a value.

min HTML A minimum value for a numeric input field.

max HTML A maximum value for a numeric input field.

Build a Credit Card Entry Page using Angular

3-8 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

ng-minlength Angular The minimum number of characters for a field.

ng-maxlength Angular The maximum number of characters for a field.

ng-required Angular The field must contain a value. Same as ‘required’.

ng-pattern Angular A regular expression the input value must match.
Table 1: Validation attributes you may add to any input field.

Each input field must have the name attribute in addition to the id attribute if
you wish to use Angular validation. The name attribute, combined with one or
more of the attributes listed in Table 1, is what Angular uses to determine the
set of fields that need to be validated.

Add Attributes to Input Fields
Open the creditcard.html page and start adding validation to each of the input
controls that require it. You are going to add a combination of HTML
attributes, custom validation directives, and Angular validation. Start by
locating the nameOnCard field and add the pdsa-validatenotlowercase and
the required attributes. The custom directive pdsa-validatenotlowercase
will check to make sure that the name on the credit card is not entered as all
lower-case characters. You will write this custom directive later in this article,
for now, just add the attribute.

<input id="nameOnCard"
 name="nameOnCard"
 ng-model="vm.creditCard.nameOnCard"
 pdsa-validatenotlowercase
 required
 class="form-control"
 placeholder="Name on Card"
 title="Name on Card"
 type="text" />

A credit card number needs to be of a certain length, and you can validate the
number entered by using the Luhn algorithm. The custom directive pdsa-
validatenotlower case is simply going to check the length, but you can add
the Luhn algorithm if you wish. Yes, we could use the ng-minlength and ng-
maxlength attributes for verifying length, but I want to show you how to create
a custom directive. Locate the cardNumber control and add the pdsa-
validatecreditcard and required attributes.

 Add Angular Validation

Build a Credit Card Entry Page using Angular 3-9
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

<input id="cardNumber"
 name="cardNumber"
 ng-model="vm.creditCard.cardNumber"
 pdsa-validatecreditcard
 required
 class="form-control"
 placeholder="Credit Card Number"
 title="Credit Card Number"
 type="text" />

A credit card security code is the 3 or 4-digit code found on the back of a
credit card. Again, you are going to write a custom directive called pdsa-
validatesecuritycode to check the length of the input. Find the securityCode
control and add the pdsa-validatesecuritycode and required attributes.

<input id="securityCode"
 name="securityCode"
 ng-model="vm.creditCard.securityCode"
 pdsa-validatesecuritycode
 required
 class="form-control"
 placeholder="Security Code"
 title="Security Code"
 type="text" />

The billing postal code for the credit card can be just about any combination
of letters, spaces and numbers up to 18 characters. You can add another
custom directive to test to ensure only letters, spaces and numbers and no
other characters, or you can use the ng-pattern directive and a regular
expresssion. Locate the billingPostalCode control and add the ng-maxlength
and required attributes.

<input id="billingPostalCode"
 name="billingPostalCode"
 ng-model="vm.creditCard.billingPostalCode"
 ng-maxlength="18"
 required
 class="form-control"
 placeholder="Billing Postal Code"
 title="Billing Postal Code"
 type="text" />

Build a Credit Card Entry Page using Angular

3-10 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Add Custom Directives
You added some custom attributes on the input fields above, so you now
need to register the appropriate directives on your Angular application
module. Directives are registered to the application module using the directive
API. You may chain multiple directive functions together if you have more
than one.
Add a new JavaScript file in the \creditcard folder named
creditcard.directives.js. In this file, add the following code to define the
overall structure for each of the custom directives you added to the input
fields.

(function () {
 "use strict";

 angular.module("app")
 .directive('pdsaValidatenotlowercase', function () {
 return { };
 })
 .directive('pdsaValidatecreditcard', function () {
 return { };
 })
 .directive('pdsaValidatesecuritycode', function () {
 return { };
 });
})();

Each directive is defined with two parameters, the directive name (expressed
in camel case) and a function that returns an object. The first parameter is the
directive name you wish to use for the HTML attribute. This name must start
with a lower-case letter, then must have one, and only one, upper case letter.
It is at the break between the lower-case letters and upper case letter where
you use a hyphen in your HTML attribute. It is recommended that you come
up with your own unique prefix to avoid name collisions with other libraries
you might add. In this case I used ‘pdsa’ as my prefix.
There are many properties that can be returned from the object supplied by
the second parameter to the directive function. For a simple validation
directive, the object returned from the function simply needs two properties;
require and link. As an example of this object, below is the code you return
from the pdsaValidatenotlowercase directive.

 Add Custom Directives

Build a Credit Card Entry Page using Angular 3-11
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

return {
 require: 'ngModel',
 link:
 function (scope, element, attributes, ngModel) {
 ngModel.$validators.pdsavalidatenotlowercase =
 function (value) {
 if (value) {
 return value.toLowerCase() != value;
 }

 return true;
 }
 }
};

Starting with the second property, link, you see that it is a function that
receives four parameters. The only one you are interested in for a validation
directive is the last one, ngModel. Now you see why the require property is
needed. When Angular sees that you are requiring the use of ngModel, it
knows to pass in the four parameters to the function specified in the link
property.
Within the function in the link parameter you add your own function, named
pdsavalidatenotlowercase in this sample, to the $validators collection of the
current ngModel. When Angular performs its validation, it loops through the
$validators collection checking to see what Angular validators are connected,
such as ng-minlength and ng-maxlength. By adding your own function into
this collection, Angular will call your function. Your function must accept one
parameter, the value from the control to which this directive is attached, and
the function must return a true or false value. This true or false value can be
tested in your HTML and can then display or hide appropriate validation
messages. The complete code for all the custom directives you added to the
HTML is listed below.

Build a Credit Card Entry Page using Angular

3-12 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

(function () {
 "use strict";

 angular.module("app")
 .directive('pdsaValidatenotlowercase',
 function () {
 return {
 require: 'ngModel',
 link: function (scope, element,
 attributes, ngModel) {
 ngModel.$validators
 .pdsavalidatenotlowercase =
 function (value) {
 if (value) {
 return value.toLowerCase() != value;
 }

 return true;
 }
 }
 };
 })
 .directive('pdsaValidatecreditcard',
 function () {
 return {
 require: 'ngModel',
 link: function (scope, element,
 attributes, ngModel) {
 ngModel.$validators
 .pdsavalidatecreditcard =
 function (value) {
 if (value) {
 value = value.toString().split("-").join("")
 .split(" ").join("");
 return value.length >= 13 &&
 value.length <= 16;
 }

 return true;
 }
 }
 };
 })
 .directive('pdsaValidatesecuritycode',
 function () {
 return {
 require: 'ngModel',
 link: function (scope, element,
 attributes, ngModel) {
 ngModel.$validators
 .pdsavalidatesecuritycode =
 function (value) {
 if (value) {
 return value.length === 3 ||
 value.length === 4;
 }

 Display Validation Messages

Build a Credit Card Entry Page using Angular 3-13
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

 return true;
 }
 }
 };
 });
})();

After you have added all the directive code, open the index.html and add a
reference to your new creditcard.directives.js file below your other script
references.

<script src="app/creditcard/creditcard.directives.js">
</script>

Display Validation Messages
In part one of this article series, you added a <div> element in which you
added an unordered list and a list item that uses the ng-repeat directive to
display messages from the vm.uiState.messages array. Just below this list
item you are going to add a series of additional list item elements to display
validation messages coming from the Angular validation system.
Each new list item element uses the ng-show directive to display the item
based on the result of the function call within the ng-show directive. For
example, here is the list item to display a message if the user enters all lower-
case letters in the Name on Card field.

<li ng-show="creditCardForm.nameOnCard.
 $error.pdsavalidatenotlowercase">
 Name on Card must not be all lower case.

Angular looks for a control in the creditCardForm with the name of
nameOnCard. It then checks its $error property to see if the result of calling
the custom directive function is true. If it is, then it knows that the value
entered was in all lower-case letters, thus this list item is displayed in the
unordered list. The listing below are the list items to add to the unordered list
in the messages area to display all Angular validation messages.

Build a Credit Card Entry Page using Angular

3-14 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

 <li ng-repeat="msg in vm.uiState.messages">
 {{msg.message}}

 <li ng-show="creditCardForm.nameOnCard.
 $error.required">
 Name on Card must be filled in.

 <li ng-show="creditCardForm.nameOnCard.
 $error.pdsavalidatenotlowercase">
 Name on Card must not be all lower case.

 <li ng-show="creditCardForm.cardNumber.
 $error.required">
 Credit Card Number must be filled in.

 <li ng-show="creditCardForm.cardNumber.
 $error.pdsavalidatecreditcard">
 Credit Card Number is invalid

 <li ng-show="creditCardForm.securityCode.
 $error.required">
 Security Code must be filled in.

 <li ng-show="creditCardForm.securityCode.
 $error.pdsavalidatesecuritycode">
 Security Code is invalid

 <li ng-show="creditCardForm.billingPostalCode.
 $error.required">
 Billing Postal Code must be filled in.

 <li ng-show="!creditCardForm.
 billingPostalCode.$valid">
 Billing Postal Code must have 18
 characters or less.

Run this sample and enter various combinations of bad data to test out each
of the validation error messages.

Add Server-Side Validation
Now that you have all the client-side validation working, add similar
functionality to the server-side code as well. As it is very simple for a hacker

 Add Server-Side Validation

Build a Credit Card Entry Page using Angular 3-15
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

to bypass client-side validation, you always check to ensure the data is
validated on the server-side as well. To do this you add a new class to the
DataLayer project named PTC-Extension. After the file is added, rename the
class inside of the file to PTC and make it a partial class. This will allow us to
add additional functionality to the PTC Entity Framework model created in
part two of this article series.

public partial class PTC
{

}

When you attempt to insert or update data using the Entity Framework, it first
calls a method named ValidateEntity to perform the validation on any data
annotations added to each property. You may override this method to add
your own custom validations. Add the following code to the PTC class in the
PTC-Extension.cs file you just added.

protected override DbEntityValidationResult
 ValidateEntity(DbEntityEntry entityEntry,
 IDictionary<object, object> items) {

 return base.ValidateEntity(entityEntry, items);
}

Add a new method named ValidateCreditCard just after the ValidateEntity
method you added. In this method is where you add your own custom
validations. You return a list of DbValidationError objects for each validation
that fails.

protected List<DbValidationError>
 ValidateCreditCard(CreditCard entity) {
 List<DbValidationError> list =
 new List<DbValidationError>();

 return list;
}

The ValidateEntity method is called once for each entity class in your model
that you are trying to validate. In our example, you are only validating the
CreditCard object since that is what the user is inputting. The entityEntry
parameter passed into this method has an Entity property which contains the
current entity being validated. Write code to check to see if that property is a
CreditCard object. If it is, pass that object to the ValidateCreditCard method.
The ValidateCreditCard method returns a list of additional DbValidationError

Build a Credit Card Entry Page using Angular

3-16 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

objects that need to be returned. If the list count is greater than zero, then
return a new DbEntityValidationResult object by passing in the entityEntry
property and your new list of DbValidationError objects.

protected override DbEntityValidationResult
 ValidateEntity(DbEntityEntry entityEntry,
 IDictionary<object, object> items) {
 List<DbValidationError> list =
 new List<DbValidationError>();

 if (entityEntry.Entity is CreditCard) {
 CreditCard entity = entityEntry.Entity as CreditCard;

 list = ValidateCreditCard(entity);

 if (list.Count > 0) {
 return new DbEntityValidationResult(entityEntry, list);
 }
 }

 return base.ValidateEntity(entityEntry, items);
}

Now write the ValidateCreditCard method to perform the various validations
for your credit card data. Check the same validations you performed on the
client-side. In this ValidateCreditCard method, you are going to retrieve a the
YearsInFuture value from the <appSettings> section in your Web.config file.
Add a reference in your DataLayer project to System.Configuration.dll so
you can use the ConfigurationManager class.

 Add Server-Side Validation

Build a Credit Card Entry Page using Angular 3-17
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

protected List<DbValidationError>
 ValidateCreditCard(CreditCard entity) {
 List<DbValidationError> list =
 new List<DbValidationError>();

 // Check Name on Card
 if (entity.NameOnCard.ToLower() == entity.NameOnCard) {
 list.Add(new DbValidationError("NameOnCard",
 "Name on Card must not be all lower case."));
 }

 // Check Card Number
 entity.CardNumber = entity.CardNumber
 .Replace("-", "").Replace(" ", "");
 if (entity.CardNumber.Length < 13 ||
 entity.CardNumber.Length > 16) {
 list.Add(new DbValidationError("CardNumber",
 "Card Number is not valid"));
 }

 // Check Security Code
 if (entity.SecurityCode.Length < 3 ||
 entity.SecurityCode.Length > 4) {
 list.Add(new DbValidationError("SecurityCode",
 "Security Code is not valid"));
 }

 // Check Month and Year
 if (entity.ExpMonth < 1 ||
 entity.ExpMonth > 12) {
 list.Add(new DbValidationError("ExpMonth",
 "Invalid Month."));
 }
 else {
 if (entity.ExpYear < DateTime.Now.Year ||
 entity.ExpYear > DateTime.Now.Year +
 Convert.ToInt32(ConfigurationManager
 .AppSettings["YearsInFuture"])) {
 list.Add(new DbValidationError("ExpYear",
 string.Format("Expiration Year must be
 greater than {0} and less than {1}.",
 DateTime.Now.Year.ToString(),
 ConfigurationManager
 .AppSettings["YearsInFuture"])));
 }
 else {
 if (entity.ExpMonth < DateTime.Now.Month &&
 entity.ExpYear == DateTime.Now.Year) {
 list.Add(new DbValidationError("ExpYear",
 "Expiration Month/Year must be
 greater than this month."));
 }
 }
 }

 return list;

Build a Credit Card Entry Page using Angular

3-18 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

}

Modify handleException Function
The last thing you need to do is to modify the handleException() function
located in the creditcard.controller.js file. Add a new case statement to handle
a 400 which is a bad request. The BadRequest method is used as the return
value in your CreditCardController.cs Post method when the view model
property IsValid is set to false. This property is set to false when the Entity
Framework raises an exception due to validation failing. Add the code shown
below to the handleException function.

function handleException(error) {
 vm.uiState.isMessageAreaHidden = false;
 vm.uiState.isLoading = false;
 vm.uiState.messages = [];

 switch (error.status) {
 case 400: // 'Bad Request'
 // Model state errors
 var errors = error.data.modelState;

 // Loop through and get all
 // validation errors
 for (var key in errors) {
 for (var i = 0; i < errors[key].length;
 i++) {
 vm.uiState.messages.push({
 property: key,
 message: errors[key][i]
 });
 }
 }

 break;

 // PREVIOUS EXCEPTION HANDLING CODE HERE

}

To try out the server-side validation, comment out the creditcard.directives.js
<script> tag in the index.html file and run the project. Put in a lower-case
name in the nameOnCard input field. Fill in valid values for all other fields.
Click the Save button to call the Web API to post the data and an error

 Summary

Build a Credit Card Entry Page using Angular 3-19
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

message should be returned and displayed telling you that you can’t have a
name that is all lower case.

Summary
In this article, you learned to save the credit card data to your database table
using the Entity Framework. In addition, you learned to validate data both on
the client-side and the server-side. Over these past three articles you have
built a credit card data entry page using Angular, the Web API and C#. You
learned how to load drop-down lists, create areas on your page that you can
turn off and on, validate data and save data into a database. Hopefully this
will give you a lot of ideas on how to build other pages using Angular and the
Web API.

Sample Code
You can download the code for this sample at www.pdsa.com/downloads.
Choose the category “PDSA Articles”, then locate the sample Code
Magazine: Angular Credit Card Page – Part 3.

http://www.pdsa.com/downloads

	Chapter 3 Build a Credit Card Entry Page using Angular – Part 3
	Save Credit Card Data
	Add CreditCardController
	Save Data from Angular
	Add Clean Up Data Function
	Add Insert Data Function
	Add Save Click Function

	Add Angular Validation
	Add Attributes to Input Fields

	Add Custom Directives
	Display Validation Messages
	Add Server-Side Validation
	Modify handleException Function
	Summary
	Sample Code

