

Build a Credit Card Entry Page using
Angular – Part 2

In the last article, you created an HTML page (Figure 1) to enter credit card
information using Angular. You created some hard-coded functions in your
Angular controller to populate the three drop-down lists. In this article, you
create Web API calls to gather the data for these three drop-down lists from a
SQL Server table. These Web API calls request the information for these
drop-down lists from a view model class. The view model class uses the
Entity Framework (EF) to build a collection credit card types from a SQL
Server table, a collection of language-specific month names, and a collection
of years. Once you have this built, you call the Web API from your Angular
controller to load the drop-down lists from this data instead of the hard-coded
data you used in the last article.

Build a Credit Card Entry Page using Angular

2 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 1: The Credit Card data entry page

Database Design
There are two tables (shown in Figure 2) needed for the credit card page. The
first table, named CreditCardType, holds the list of credit card types (Visa,
MasterCard, etc.) to be loaded into the drop-down on the web page. The
second table, named CreditCard, holds the credit card information entered by
the user, and will be used in the next article.

 Database Design

Build a Credit Card Entry Page using Angular 3
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Figure 2: Two tables are needed for credit card information

To create these two tables, open SQL Server Management Studio and select
an existing, or create a new database. Open a query window in your new
database and type in the following script to create the CreditCard and
CreditCardType table.

Build a Credit Card Entry Page using Angular

4 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

CREATE TABLE CreditCard (
 CreditCardId uniqueidentifier NOT NULL
 PRIMARY KEY NONCLUSTERED,
 CardType varchar(20) NOT NULL,
 NameOnCard varchar(100) NOT NULL,
 CardNumber varchar(25) NOT NULL,
 SecurityCode varchar(4) NOT NULL,
 ExpMonth smallint NOT NULL,
 ExpYear smallint NOT NULL,
 BillingPostalCode varchar(10) NOT NULL
);

CREATE TABLE CreditCardType (
 CardTypeId int IDENTITY(1,1) NOT NULL
 PRIMARY KEY NONCLUSTERED,
 CardType varchar(20) NOT NULL,
 IsActive bit NOT NULL DEFAULT ((1))
);

INSERT CreditCardType (CardType)
 VALUES ('Visa');
INSERT CreditCardType (CardType)
 VALUES ('Master Card');
INSERT CreditCardType (CardType)
 VALUES ('American Express');
INSERT CreditCardType (CardType)
 VALUES ('Discover');
INSERT CreditCardType (CardType)
 VALUES ('Diners Club');

Add the Entity Framework
I separate the classes for my data access into a separate DLL. This provides
me with the ability to change my data access method later if I want. To do
this, right mouse click on your solution and choose Add | New Project from
the menu. Select Windows | Class Library from the list of templates. Set the
Name to DataLayer and click the OK button. Delete the Class1.cs file from
the project as this is not needed.
Right mouse click on the new DataLayer project and select Add | New Item
from the menu. Select Data | ADO.NET Entity Data Model from the list of
templates. Set the Name to PTC and click the Add button. Choose Code
First from Database from the list. Create a new connection to the database
that contains the CreditCard and CreditCardType tables you created earlier.
Select both tables from the list and click the Finish button.

 Add a View Model

Build a Credit Card Entry Page using Angular 5
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

After the generation is complete, you have three new classes in your class
library project. An App.config file is also created with a <connectionString>
element. Move the connection string from the App.config in this project into
the Web.config file in your CreditCardEntry project. Open the App.config file
and locate the <connectionStrings> element that looks like the following:

<connectionStrings>
 <add name="PTC"
 connectionString="data source=localhost;
 initial catalog=PTC;
 integrated security=True;
 MultipleActiveResultSets=True;
 App=EntityFramework"
 providerName="System.Data.SqlClient" />
</connectionStrings>

Cut this out of the App.config file, open the Web.config file in the
CreditCardEntry project and paste this section into this config file. After you
have moved the connection string, delete the App.config file from the
DataLayer project. Your data layer is now complete and ready to be used.

Add a View Model
Sticking with our theme of “separation of concerns”, let’s build a view model
class to use as the intermediary between the Web API controller and the data
access layer. It is a good practice to keep as little code as possible in the
controller. By creating a view model class in a separate project it allows you
to reuse all the business and data access logic in any other project.
Right mouse click on your CreditCardEntry solution and choose Add | New
Project from the menu. Select Windows | Class Library from the list of
templates. Set the Name to ViewModelLayer and click the OK button.
Rename the Class1.cs file to CreditCardViewModel.cs. Answer yes when
prompted if you wish to rename the class as well.
Right mouse click on the References folder and select Add Reference from
the menu. Click on the Projects | Solution tab and check the DataLayer
from the list of projects. Click the OK button to add the reference.
Since you are going to be using Entity Framework generated classes in your
view model class you need to add some EF references to this project. Right
mouse click on the ViewModelLayer project and select Manage NuGet
Packages from the menu. Click on the browse tab and type in Entity
Framework into the search text box and hit the Enter key. Locate the

Build a Credit Card Entry Page using Angular

6 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

EntityFramework by Microsoft and click on it. Click the Install button to add
all of the appropriate references to the entity framework for this project.

MonthInfo Class
When loading the months into the drop-down list, you are going to need to
know the month number as well as the month name. Create a class called
MonthInfo in the ViewModelLayer project that you can place these two
values into. A collection of these objects will be serialized and sent to Angular
for loading into the drop-down.

public class MonthInfo
{
 public MonthInfo(short number, string name) {
 MonthNumber = number;
 MonthName = name;
 }
 public short MonthNumber { get; set; }
 public string MonthName { get; set; }
}

Add using Statements
The CreditCardViewModel class is going to call the CreditCardType class to
retrieve the various credit card types to display. This class will retrieve
validation error messages from your EF generated classes and generate a list
of month names based on the user’s current browser language. With all of
this functionality, and a few others, it will be necessary to add the following list
of using statements at the top of the CreditCardViewModel file.

using DataLayer;
using System;
using System.Collections.Generic;
using System.Data.Entity.Validation;
using System.Globalization;
using System.Linq;

Create Properties for View Model
Like any view model class, a set of properties are needed to hold the state of
the object. Add the following properties to the CreditCardViewModel class.

 Add a View Model

Build a Credit Card Entry Page using Angular 7
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

public bool IsValid { get; set; }
public List<DbEntityValidationResult> Messages { get; set; }

public string DefaultLanguage { get; set; }
public string Language { get; set; }

public CreditCard Entity { get; set; }

public List<CreditCardType> CardTypes { get; set; }
public List<MonthInfo> Months { get; set; }
public List<int> Years { get; set; }

The Entity property holds the current CreditCard object the user is attempting
to insert. An IsValid property is used to report back if there were validation
errors in the current Entity. The Messages property is a list of
DbEntityValidationResult objects. Each of these objects contains a
validation error for a field that failed.
As there are three drop-down lists to load on your page, create three
properties to hold a collection for each of these; CardTypes, Months and
Years. For the months drop-down list, you should strive to display them in the
user’s language. You can attempt to retrieve the user’s language from the
browser and pass that to the Language property in the view model so it can
use the Globalization classes in .NET to retrieve month names in the
language of choice. However, if you are unable to retrieve the user’s
language setting, then you should have a DefaultLanguage property you can
fill in with a default language setting.

Initialize the Public Properties
It is always a good idea to initialize your properties in your view model class
to a valid start state. Build a constructor in your view model class to set each
property to an initialized state.

Build a Credit Card Entry Page using Angular

8 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

public CreditCardViewModel() {
 IsValid = true;
 Messages = new List<DbEntityValidationResult>();

 DefaultLanguage = string.Empty;
 Language = string.Empty;

 Entity = new CreditCard();

 CardTypes = new List<CreditCardType>();
 Months = new List<MonthInfo>();
 Years = new List<int>();
}

Load Card Types
In the last article, you hard-coded credit card types in the Angular controller.
Now that you have a database table, and the appropriate EF classes, you can
retrieve these credit card types from your table and populate your CardTypes
property. Create a method called LoadCardTypes() and write the code shown
below.

public void LoadCardTypes() {
 PTC db = new PTC();

 CardTypes = db.CreditCardTypes
 .Where(c => (c.IsActive))
 .OrderBy(c => c.CardType).ToList();
}

Load Months
Create a method named LoadMonths to build this collection of MonthInfo
objects. Using the System.Globalization namespace you attempt to get the
month names from the CultureInfo class in .NET. The DateTimeFormat
property of the CultureInfo class contains a MonthNames collection with the
localized month names for the culture specified by the language passed to
the constructor of the CultureInfo class. If you pass a bad language specifier,
an exception is thrown. You then use the value in the DefaultLanguage
property. This DefaultLanguage property is filled in by the Web API controller
with data retrieved from the Web.config file.

 Add a View Model

Build a Credit Card Entry Page using Angular 9
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

public void LoadMonths() {
 string[] monthNames = null;

 try {
 // Try to get month names
 monthNames = (new CultureInfo(Language))
 .DateTimeFormat.MonthNames;
 }
 catch (CultureNotFoundException) {
 // Default to a known language
 monthNames = (new System.Globalization
 .CultureInfo(DefaultLanguage))
 .DateTimeFormat.MonthNames;
 }

 // Create Months Array
 for (int index = 0; index < monthNames.Length; index++) {
 // NOTE: Month array is 13 entries long
 if (!string.IsNullOrEmpty(monthNames[index])) {
 Months.Add(new MonthInfo(Convert.ToInt16(index + 1),
 monthNames[index]));
 }
 }

 if (Entity.ExpMonth == 0) {
 // Figure out which month to select
 // Make it next month by default
 Entity.ExpMonth = Convert.ToInt16(DateTime.Now.Month + 1);
 Entity.ExpYear = Convert.ToInt16(DateTime.Now.Year);
 // If past December, then make it January of the next year
 if (Entity.ExpMonth > 12) {
 Entity.ExpMonth = 1;
 Entity.ExpYear += 1;
 }
 }
}

Once you have the array of month names, you need to turn these into a
collection of MonthInfo objects. Loop through the array and each time through
create a new instance of the MonthInfo class, setting the MonthNumber and
the MonthName properties from the month names array.
The last thing to do is to default the ExpMonth and ExpYear to some default
values. As you do not want your user to put in a month and year less than the
current month and year, you add one to the current month and set that into
the ExpMonth property. If you add one to the current month and it comes out
to be 13, then increment the year by one and place that value into the
ExpYear property. Otherwise, you just set the ExpYear to be the current year.

Build a Credit Card Entry Page using Angular

10 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Load Years
The last method to create is to load the years into the Years property. The
LoadYears method accepts a specified number of years in the future to load a
generic list of integers. If you do not pass in any number, the default of 20
years is used.

public void LoadYears(int yearsInFuture = 20) {
 List<int> ret = new List<int>();

 Years = new List<int>();
 for (int i = DateTime.Now.Year;
 i <= (DateTime.Now.Year + yearsInFuture); i++) {
 Years.Add(i);
 }
}

Build Web API Controllers
Now that you have a database design, some Entity Framework classes, and a
view model to encapsulate the data you need for your credit card page, you
are ready to expose that data through a web service. Right mouse click on
the References folder in the CreditCardEntry project and select Add
Reference. Add references to your two new projects; DataLayer and
ViewModelLayer.

Credit Card Types Controller
Right mouse click on the Controllers folder and select Add | Web API
Controller Class (v2.1). If this option does not appear in your drop down
menu, select Add | New Item and choose it under the Web | Web API
templates. Set the name of this controller to CreditCardTypeController.
Remove all code within the class and write the following method.

 Build Web API Controllers

Build a Credit Card Entry Page using Angular 11
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

public IHttpActionResult Get() {
 IHttpActionResult ret;
 CreditCardViewModel vm = new CreditCardViewModel();

 vm.LoadCardTypes();
 if (vm.CardTypes.Count() > 0) {
 ret = Ok(vm.CardTypes);
 }
 else {
 ret = NotFound();
 }

 return ret;
}

This method creates an instance of your CreditCardViewModel class. Call the
LoadCardTypes method to load the CardTypes collection in the view model. If
card types are loaded, return the status code of 200, via the Ok method,
passing in the card types collection as the payload. If no card types are found,
then return a 404 using the NotFound method.

Month Names Controller
Right mouse click on the Controllers folder and select Add | Web API
Controller Class (v2.1). Set the name of this controller to
MonthNamesController. Remove all code within the class and write the
following method.

Build a Credit Card Entry Page using Angular

12 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

public IHttpActionResult Get(string id) {
 IHttpActionResult ret;
 CreditCardViewModel vm = new CreditCardViewModel();

 // Set default language
 vm.DefaultLanguage =
 ConfigurationManager.AppSettings["DefaultLanguage"];

 // Set the language passed in
 vm.Language = (string.IsNullOrEmpty(id) ?
 vm.DefaultLanguage : id);

 vm.LoadMonths();
 if (vm.Months.Count() > 0) {
 ret = Ok(vm.Months);
 }
 else {
 ret = NotFound();
 }

 return ret;
}

This method is called from your Angular controller, but you need to pass in a
parameter that is named id. You must use the parameter name of id since
this is what the default route is expecting. The id parameter is the language
code retrieved from the browser. By passing in the language you can let .NET
return the month names in the appropriate language for your user. Call the
LoadMonths method in your view model class and if months are loaded,
return the months via the Ok method.
If no language is passed to this method, retrieve a default language from your
<appSettings> section in the Web.config file and put it into the
DefaultLanguage property of your view model. This default value will be used
if no language is passed, or an unrecognized language is passed from the
browser. Open your Web.Config file and add the DefaultLanguage key and a
key for YearsInFuture. You will need the number of years in the next
controller.

<appSettings>
 <add key="DefaultLanguage"
 value="en-US" />
 <add key="YearsInFuture"
 value="20" />
</appSettings>

 Call Web API to Load Drop-Down Lists

Build a Credit Card Entry Page using Angular 13
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Years Controller
Right mouse click on the Controllers folder and select Add | Web API
Controller Class (v2.1). Set the name of this controller to YearsController.
Remove all code within the class and write the following method.

public IHttpActionResult Get() {
 IHttpActionResult ret;
 CreditCardViewModel vm = new CreditCardViewModel();

 vm.LoadYears(
 Convert.ToInt32(
 ConfigurationManager.AppSettings["YearsInFuture"]));

 if (vm.Years.Count() > 0) {
 ret = Ok(vm.Years);
 }
 else {
 ret = NotFound();
 }

 return ret;
}

This method retrieves the YearsInFuture setting from the Web.config file and
passes that value to the LoadYears method in your view model class. The
Years collection is filled with the number of years specified by the value
passed in. If there are years in the Years collection, they are returned via the
Ok method.

Call Web API to Load Drop-Down Lists
Now that you have the Web API calls built for loading the drop-down lists, you
can now call these from your Angular controller. All the hard-coded functions
you wrote in the previous article are going to be rewritten to call the
appropriate Web API methods. You also need to add some exception
handling to report any errors. Open the \app\creditcard\creditcard.controller.js
file and start adding this new functionality.

Build a Credit Card Entry Page using Angular

14 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Handle Exceptions
When you make calls to a Web API you should always make sure you are
checking for exceptions. Write a generic handleException function to retrieve
any error message information and place an object with a single property
called message into the vm.uiState.messages array.

function handleException(error) {
 vm.uiState.isMessageAreaHidden = false;
 vm.uiState.isLoading = false;
 vm.uiState.messages = [];

 switch (error.status) {
 case 404: // 'Not Found'
 vm.uiState.messages.push(
 {
 message: "The data you were " +
 "requesting could not be found"
 });
 break;

 case 500: // 'Internal Error'
 vm.uiState.messages.push(
 {
 message: error.data.exceptionMessage
 });
 break;

 default:
 vm.uiState.messages.push(
 {
 message: "Status: " +
 error.status +
 " - Error Message: " +
 error.statusText
 });
 break;
 }
}

Load Card Types
In Part 1 of this article you hard coded a set of credit card types in the
loadCardTypes function. Locate the loadCardTypes function in the
creditcard.controller.js file and modify the code to look like the following.

 Call Web API to Load Drop-Down Lists

Build a Credit Card Entry Page using Angular 15
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

function loadCardTypes() {
 dataService.get("/api/CreditCardType")
 .then(function (result) {
 vm.cardTypes = result.data;

 if (vm.cardTypes.length > 0) {
 vm.selectedCardType = vm.cardTypes[0];
 }
 },
 function (error) {
 handleException(error);
 });
}

In Part 1 of this article, the $http data service was passed into the controller.
We assigned this service to the variable named dataService. Use the get()
function of this data service to call the CreditCardType controller you created
earlier to retrieve the credit card types from your SQL Server database. Once
you retrieve the card type from the Web API, the result.data property is filled
in with an array of JSON objects that represent each card type. Assign these
values to the vm.cardTypes property because this is the property that is
bound to the HTML <select> element that displays them to the user. Finally
set the vm.selectedCardType property to the first element in the array in order
to position the <select> element to that card type.

Load Month Names
The month names are still hard-coded in the loadMonths function. Locate the
loadMonths function and replace the hard-coding with the code to call the
Web API you created.

Build a Credit Card Entry Page using Angular

16 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

function loadMonths() {
 var today = new Date();

 // Get the language from the browser
 var language =
 navigator.languages &&
 navigator.languages[0] || // Chrome / Firefox
 navigator.language || // All browsers
 navigator.userLanguage; // IE <= 10

 dataService.get("/api/MonthNames/" + language)
 .then(function (result) {
 // Transform the data to use nn - monthName format
 for (var index = 0;
 index < result.data.length;
 index++) {
 var month = {
 monthNumber: index + 1,
 monthName: (index + 1).toString()
 + "-" + result.data[index].monthName
 };
 vm.months.push(month);
 }

 // Figure out which month to select
 // Make it next month by default
 vm.creditCard.expMonth = today.getMonth() + 2;
 // If past December, make it January of next year
 if (vm.creditCard.expMonth > 12) {
 vm.creditCard.expMonth = 1;
 vm.creditCard.expYear = vm.creditCard.expYear + 1;
 }
 vm.selectedMonth =
 vm.months[vm.creditCard.expMonth - 1];

 vm.uiState.isLoading = false;
 },
 function (error) {
 handleException(error);
 });
}

The call to the Web API is like the other calls you just wrote except you must
pass in the current language the browser is running. The navigator object is
queried to see which of the languages, language or the userLanguage
properties contain a value. This is the value that you pass to the id parameter
of the MonthNames controller. When the data is returned, loop through each
object and convert the data to display in a nn-monthName format, for
example; 1-January, 2-February, etc. The rest of the code is what you wrote
in the first part of this article to set the default month and year of the drop-
downs.

 Summary

Build a Credit Card Entry Page using Angular 17
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Load Years
The loadYears JavaScript function you wrote in the last article is almost the
same as the code you wrote in the Years controller. Having the functionality
to load years, months and credit card types in a web service gives us more
flexibility rather than hard-coding everything in JavaScript files. Assign the
return value from the Years API to the vm.years property as this is the
property that is bound to the <select> element used to display the years.

function loadYears() {
 var year = new Date().getFullYear();

 dataService.get("/api/Years")
 .then(function (result) {
 vm.years = result.data;

 vm.creditCard.expYear = year;
 },
 function (error) {
 handleException(error);
 });
}

You can now run the sample and see all of the data coming from the Web API
calls.

Summary
In this article you created the appropriate Web API calls to load each of the
drop-down lists on your credit card data entry page. You built a set of Entity
Framework classes to read the credit card types from a SQL Server table.
You built three Web API controllers to be called from your Angular functions
to load each of the drop-down lists. Finally, you replaced the hard-coded
functions you wrote in the first article, with calls to the Web API to get all data
from the back-end server. In the next article, you are going to take the credit
card data entered by the user, validate that data, and then save that data into
a SQL Server table.

Build a Credit Card Entry Page using Angular

18 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Sample Code
You can download the code for this sample at www.pdsa.com/downloads.
Choose the category “PDSA Articles”, then locate the sample Code
Magazine: Angular Credit Card Page – Part 2.

http://www.pdsa.com/downloads

	Build a Credit Card Entry Page using Angular – Part 2
	Database Design
	Add the Entity Framework
	Add a View Model
	MonthInfo Class
	Add using Statements
	Create Properties for View Model
	Initialize the Public Properties
	Load Card Types
	Load Months
	Load Years

	Build Web API Controllers
	Credit Card Types Controller
	Month Names Controller
	Years Controller

	Call Web API to Load Drop-Down Lists
	Handle Exceptions
	Load Card Types
	Load Month Names
	Load Years

	Summary
	Sample Code

