

Build a Credit Card Entry Page using
Angular – Part 1

A common page on many public websites is a page that asks a user to submit
their credit card information. This seemingly simple little page has quite a few
moving pieces in it. This series of articles illustrates how to build the HTML,
Web API calls, a view model class, the Entity Framework objects, and the
appropriate AngularJS controller to create a credit card entry page. Yes, I am
still using AngularJS (or Angular 1) as opposed to Angular 2. The reason for
this is I am finding that many developers are more familiar with JavaScript
than with TypeScript and wish to stay with a language they know. There is
nothing wrong with Angular 1, and thus no compelling reason to upgrade to
Angular 2 if you don’t want to.
In the first part of this article series you build the basic HTML for the credit
card entry page. You also load the credit card types, months and years into
drop-down lists on the page using hard-coded data. Succeeding articles will
show how to build a Web API, Entity Framework classes, and a view model to
support getting and storing credit card data from a set of SQL Server tables.

Overview of SPA Architecture
In this first article, you are going to layout the overall SPA pages needed to
support the credit card data entry page. Figure 1 shows the two pages you
are going to create for this system. The index.html page is like a Master Page
in Web Forms or a Shared Layout page in MVC in that it contains the
“chrome” for all the pages you route to. The only page in this article you are
going to route to is the creditcard.html page, but the ng-view directive can be
used for as many pages as you need in your application.

Build a Credit Card Entry Page using Angular

2 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 1: Overall architecture of SPA architecture

The creditcard.html page (shown in Figure 2) is where the user enters their
credit card information. The index-splash.html page is displayed when the
user first enters the system. If you have a ng-view directive, you must always
have something displayed in it. If not, Angular will go into a recursive loop and
eventually error out.

 Build the Main SPA Page

Build a Credit Card Entry Page using Angular 3
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Figure 2: The Credit Card data entry page

Build the Main SPA Page
You are going to build a Single Page Application (SPA) to illustrate how to
build the credit card page. This means you build a single index.html page
from which you call the credit card page in your application. This sample will
just contain the one credit card HTML page, but it is good to build your
application using the SPA design pattern so you can add additional pages
later.
Open Visual Studio 2015 and select File | New | Project. Choose Web under
the Visual C# templates, then select ASP.NET Web Application (.NET
Framework). Set the Name of the project to CreditCardEntry and click the

Build a Credit Card Entry Page using Angular

4 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

OK button. Select the Empty template, and check the Web API check box
before pressing the OK button as shown in Figure 3.

Figure 3: Select and Empty project template using the Web API

Using the NuGet Package Manager tool, install the packages needed for the
complete sample. You are not going to use the Entity Framework yet, but in
the next articles you will need this, so you might as well add it now.

• EntityFramework

• AngularJS.Core

• AngularJS.Route

• Bootstrap
Add a new HTML page in the root of your project called index.html. Modify
the page to look like Figure 4 using the HTML shown in the listing below:

 Build the Main SPA Page

Build a Credit Card Entry Page using Angular 5
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

<!DOCTYPE html>
<html>
<head>
 <title>Credit Card Entry Sample</title>
 <meta charset="utf-8" />

 <link href="Content/bootstrap.min.css"
 rel="stylesheet" />
</head>
<body>
 <div class="container"
 ng-app="app"
 ng-controller="IndexController as vm">
 <div class="row">
 <div class="col-sm-10">
 <h1>Credit Card Entry System in Angular
 </h1>
 </div>
 </div>

 <div class="row">
 <div class="col-sm-10">
 <a href="#/creditcard"
 class="btn btn-primary">
 Credit Card Entry

 </div>
 </div>

 <!-- Separator Line -->
 <div class="row">
 <div class="col-sm-10">

 </div>
 </div>

 <!-- ** BEGIN PARTIAL VIEWS AREA -->
 <div ng-view></div>
 <!-- ** END PARTIAL VIEWS AREA -->
 </div>

 <script src="scripts/angular.js"></script>
 <script src="scripts/angular-route.js"></script>
</body>
</html>

Towards the bottom of the page you see a <div> tag with an attribute of ng-
view. This attribute tells Angular where you wish to insert partial pages within
this page. The # sign as the first character in the <a> tag, followed by the
/creditcard informs Angular you want to find an Angular route named
“creditcard” and to load that partial page within the <div> tag with the ng-view
attribute.

Build a Credit Card Entry Page using Angular

6 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 4: The main HTML page for your SPA

Modify the Global.asax.cs file to handle self-referencing in the Entity
Framework and convert all pascal case property names to camel case. There
is no self-referencing in this sample, but I find in many projects, this helps
avoid some hard-to-track-down bugs.

protected void Application_Start() {
 GlobalConfiguration.Configure(WebApiConfig.Register);

 // Handle self-referencing in Entity Framework
 HttpConfiguration config =
 GlobalConfiguration.Configuration;
 config.Formatters.JsonFormatter
 .SerializerSettings.ReferenceLoopHandling =
 Newtonsoft.Json.ReferenceLoopHandling.Ignore;

 // Convert to camelCase
 var jsonFormatter = config.Formatters
 .OfType<JsonMediaTypeFormatter>().FirstOrDefault();
 jsonFormatter.SerializerSettings.ContractResolver =
 new CamelCasePropertyNamesContractResolver();
}

 Build Angular Folder and JavaScript Files

Build a Credit Card Entry Page using Angular 7
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Build Angular Folder and JavaScript
Files

A popular style for laying out Angular applications is to create a \app folder in
your project and place all your HTML and JavaScript files in this folder. Group
your files into folders with the name of the page you are working on. There
are two Angular-controlled pages in this sample; the index page and the
credit card page. Create a folder structure like the one shown in Figure 5.

Figure 5: Create your folder structure.

Build Index Page JavaScript Files
In the \app\index folder add a new JavaScript file named index.module.js.
This is where you create your Angular module that matches the name in the
ng-app attribute of the <div> tag in your index.html page. As you are going to
be using Angular routing include the ‘ngRoute’ module dependency.

(function () {
 'use strict';

 angular.module('app', ['ngRoute']);
})();

Create another JavaScript file named index.controller.js within the
\app\index folder. In this file is where you define the Angular controller for this
page. This page has no functionality other than to redirect to other pages,
thus there is no code in this controller function.

Build a Credit Card Entry Page using Angular

8 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

(function () {
 'use strict';

 angular.module('app').controller('IndexController',
 IndexController);

 function IndexController() {
 }
})();

Add one more JavaScript file to the \app\index folder named index.route.js.
This file defines the various routes that you use in anchor tags on your
index.html page.

(function () {
 'use strict';

 // Create angular routing
 angular.module('app')
 .config(['$routeProvider', function ($routeProvider) {
 $routeProvider
 .when('/',
 {
 templateUrl: 'app/index/index-splash.html',
 controllerAs: 'vm',
 controller: 'IndexController'
 })
 .when('/creditcard',
 {
 templateUrl: 'app/creditcard/creditcard.html',
 controllerAs: 'vm',
 controller: 'CreditCardController'
 })
 .otherwise(
 {
 redirectTo: '/'
 });
 }]);
})();

Each route is defined using the when() function. You pass to the when()
function the route defined in an anchor tag, or to call using Angular location
services. You also pass in an object that defines either some inline HTML or
an HTML template to display within the ng-view area. You may optionally
define the controller name and a ‘controllerAs’ property to name each
controller reference.
The default route, defined as when(‘/’), tells Angular to redirect back to
index.html. You must define either some HTML, or an HTML template to
display within the ng-view area when someone requests a route or Angular
gets caught in a loop which eventually causes an error. Personally, I like to

 Build the Credit Card HTML

Build a Credit Card Entry Page using Angular 9
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

define a little “splash” page to display some opening remarks to the user.
Create a new HTML page in the \app\index folder named index-splash.html.
Strip all HTML from the page that is added, and just add this one line to the
file.

<p>This sample illustrates a credit card entry system.</p>

Open the index.html page and add the following <script> tags below the
angular script tags.

 <script src="scripts/angular.js"></script>
 <script src="scripts/angular-route.js"></script>

 <script src="app/index/index.module.js"></script>
 <script src="app/index/index.controller.js"></script>
 <script src="app/index/index.route.js"></script>
</body>
</html>

You should be able to run the main index page. Don’t click on the button as it
is not hooked up yet.

Build the Credit Card HTML
Add an HTML page to the \app\creditcard folder named creditcard.html. This
is a partial page, so we don’t need any of the normal HTML tags, so go ahead
and delete all HTML in this page. You only need to write the HTML to be
loaded within the <div> tag with the ng-view attribute. The code shown below
is not the final code, but is just the initial layout for the credit card HTML page.

Build a Credit Card Entry Page using Angular

10 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

<div class="row">
 <div class="col-sm-8">
 <form name="creditCardForm" novalidate>
 <div class="panel panel-default">
 <div class="panel-heading">
 <h3 class="panel-title">
 Credit Card Information
 </h3>
 </div>
 <div class="panel-body">

 </div>
 <div class="panel-footer">
 <div class="row">
 <div class="col-xs-12">
 <div class="pull-right">
 <button type="button"
 class="btn btn-primary"
 ng-click=
 "vm.saveClick(creditCardForm)">
 <i class="glyphicon
 glyphicon-floppy-disk">
 </i>
 Save
 </button>
 <a class="btn btn-primary"
 formnovalidate="formnovalidate"
 href="#/">
 <i class="glyphicon
 glyphicon-remove-circle">
 </i>
 Cancel

 </div>
 </div>
 </div>
 </div>
 </div>
 </form>
 </div>
</div>

The credit card page is created within a Bootstrap row and a column. Add a
<form> tag to encapsulate the input fields for the credit card data. Next, build
the structure of the Bootstrap panel control into which all the messages and
input fields will reside. The messages and input fields will be placed into the
panel body. In the footer of the panel control you define a save and cancel
button.

 Build the Credit Card HTML

Build a Credit Card Entry Page using Angular 11
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Add Credit Card Controller
For each partial web page, you need an Angular controller that goes with it.
Add a JavaScript file in the \app\creditcard folder named
creditcard.controller.js. Add the following code to this script file.

(function () {
 "use strict";

 angular.module("app")
 .controller("CreditCardController", CreditCardController);

 function CreditCardController($http, $location) {
 var vm = this;
 var dataService = $http;

 // Create UI state object
 vm.uiState = {
 isMessageAreaHidden: true,
 isLoading: true,
 messages: []
 };
 }
})();

In the above function the $http and $location services are injected into our
controller. A common practice is to assign each of the services to a local
variable. Assign the $scope from Angular to the variable vm, and the $http
service to a variable named dataService.
The object in the credit card controller name uiState is used to hold
properties that affect the user interface in some manner. The
isMessageAreaHidden property turns on and off a Bootstrap alert area used
to display messages to the user. The isLoading property determines whether
to display a “Please wait while loading” message to the user when they first
enter the web page or not. The messages array holds a collection of
message objects that are displayed in the message area on the screen.

Error Message Area
Within the body of the panel control create a <div> tag to display error and
validation messages to the user. This functionality for displaying messages
will be added in a future article. Messages you add to the messages array
you create in the controller are displayed within an unordered list. You can
see the ng-repeat attribute is used to loop through each message in the array
and display any values set in a message property within an element.
Within the <div class=”panel-body”> add the HTML shown below.

Build a Credit Card Entry Page using Angular

12 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

<!-- ** BEGIN MESSAGE AREA ** -->
<div ng-hide="vm.uiState.isMessageAreaHidden ||
 (creditCardForm.$valid &&
 !creditCardForm.$pristine)"
 class="row">
 <div class="col-xs-12">
 <div class="alert alert-danger
 alert-dismissable"
 role="alert">
 <button type="button" class="close"
 data-dismiss="alert">

 ×

 Close
 </button>

 <li ng-repeat="msg in vm.uiState.messages">
 {{msg.message}}

 </div>
 </div>
</div>
<!-- ** END MESSAGE AREA ** -->

The <div> within the panel body uses the Angular ng-hide attribute to hide
this area based on a few different flags. The isMessageAreaHidden property
in the vm.uiState object in your controller is set by you depending on whether
or not there are validation messages to be displayed. You check two other
properties on the creditCardForm in addition to the isMessageAreaHidden
property. If the creditCardForm is valid is true and pristine property is false,
then the message area will be hidden.

Loading Message Area
Add another <div> tag just after the message area you created. This <div>
tag uses the Angular ng-show attribute so this area is only displayed when a
property in your controller, vm.uiState.isLoading, is set to a true value. When
this page is first loaded, all the drop-down lists need to be loaded. Calling the
Web API to get this data can take a couple of seconds on the first load, so it
is a good idea to display a “Please wait while loading” message to the user
before you display any other user interface items to them.

 Build the Credit Card HTML

Build a Credit Card Entry Page using Angular 13
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

<!-- ** BEGIN LOADING MESSAGE AREA ** -->
<div class="row" ng-show="vm.uiState.isLoading">
 <div class="col-sm-offset-1 col-sm-10
 alert alert-warning">
 <div class="text-center">
 Please wait while loading
 credit card information...
 </div>
 </div>
</div>
<!-- ** END LOADING MESSAGE AREA ** -->

Input Fields
After the loading message area above, add another <div> element which is
hidden until the vm.uiState.isLoading property is set to a false value. In the
controller, this property is initially set to a true value. After all the drop-down
lists have been loaded, this property is set to false. At that time the loading
message will be hidden and the user input fields within this <div> tag will be
displayed. Below is the HTML for each of the input fields required for the
credit card data. You have not added the Angular binding yet, but will do that
later in this article.

Build a Credit Card Entry Page using Angular

14 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

<!-- ** BEGIN CREDIT CARD ENTRY AREA ** -->
<div ng-hide="vm.uiState.isLoading">
 <div class="row">
 <div class="form-group col-sm-6">
 <label for="types">Select Credit Card Type
 </label>
 <select id="types"
 name="types"
 class="form-control">
 </select>
 </div>
 </div>
 <div class="form-group">
 <label for="nameOnCard">Name on Card</label>
 <input id="nameOnCard"
 name="nameOnCard"
 class="form-control"
 placeholder="Name on Card"
 title="Name on Card"
 type="text" />
 </div>
 <div class="row">
 <div class="form-group col-sm-8">
 <label for="cardNumber">Credit Card Number
 </label>
 <input id="cardNumber"
 name="cardNumber"
 class="form-control"
 placeholder="Credit Card Number"
 title="Credit Card Number"
 type="text" />
 </div>
 <div class="form-group col-sm-4">
 <label for="securityCode">Security Code
 </label>
 <input id="securityCode"
 name="securityCode"
 class="form-control"
 placeholder="Security Code"
 title="Security Code"
 type="text" />
 </div>
 </div>
 <div class="row">
 <div class="form-group col-sm-8">
 <label for="expMonths">Exp. Month</label>
 <select id="expMonths"
 name="expMonths"
 class="form-control">
 </select>
 </div>
 <div class="form-group col-sm-4">
 <label for="expYears">Exp. Year</label>
 <select id="expYears"
 name="expYears"
 class="form-control">

 Credit Card Controller

Build a Credit Card Entry Page using Angular 15
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

 </select>
 </div>
 </div>
 <div class="row">
 <div class="form-group col-sm-6">
 <label for="billingPostalCode">
 Billing Postal Code
 </label>
 <input id="billingPostalCode"
 name="billingPostalCode"
 class="form-control"
 placeholder="Billing Postal Code"
 title="Billing Postal Code"
 type="text" />
 </div>
 </div>
</div>
<!-- ** END CREDIT CARD ENTRY AREA ** -->

Open the index.html page and add the following <script> tag below the other
script tags you added earlier.

 <script src="scripts/angular.js"></script>
 <script src="scripts/angular-route.js"></script>

 <script src="app/index/index.module.js"></script>
 <script src="app/index/index.controller.js"></script>
 <script src="app/index/index.route.js"></script>

 <script src="app/creditcard/creditcard.controller.js">
 </script>
</body>
</html>

You should be able to run the main index page and click on the Credit Card
Entry button to display your credit card page. The page will show the
“Loading” message because the isLoading property is set to true. To see the
input fields, go into the creditcard.controller.js file, change the isLoading
property to false, and rerun the page. If you do this, be sure to set it back to
true once you stop the web application.

Credit Card Controller
Let’s add more of the properties to the CreditCardController function that you
are going to require for the credit card page. You need array properties to

Build a Credit Card Entry Page using Angular

16 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

load the drop-down lists. You need objects for selecting a credit card type and
a month, and you need an object to hold properties for each input field. In
addition, you need properties to turn on and off the various message areas on
the page. Add the additional code shown below to your creditcard.controller.js
file.

 Credit Card Controller

Build a Credit Card Entry Page using Angular 17
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

function CreditCardController($http, $location) {
 var vm = this;
 var dataService = $http;

 // Expose public properties
 vm.cardTypes = [];
 vm.months = [];
 vm.years = [];

 vm.selectedCardType = {};
 vm.selectedMonth = {};

 vm.creditCard = {
 creditCardId: null,
 cardType: null,
 nameOnCard: null,
 cardNumber: null,
 securityCode: null,
 expMonth: null,
 expYear: null,
 billingPostalCode: null
 };

 vm.uiState = {
 isMessageAreaHidden: true,
 isLoading: true,
 messages: []
 };

 // Initialize Controller
 loadCardTypes();
 loadYears();
 loadMonths();

 // Load Credit Card Types
 function loadCardTypes() {

 }

 // Load years
 function loadYears() {

 }

 // Load months
 function loadMonths() {

 }
}

The three arrays in the scope for this controller hold the data to go into the
three drop-down lists on the credit card page. The cardTypes array and
month array are both object arrays. The years array is an array of integer
values representing a year the user can select from.

Build a Credit Card Entry Page using Angular

18 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

vm.cardTypes = [];
vm.months = [];
vm.years = [];

When the user selects a value from a drop-down that is bound to an object,
you can bind to another object in your controllers’ scope. Create two
additional properties to bind to for the month and card type.

vm.selectedMonth = {};
vm.selectedCardType = {};

The next object you create is one that holds the data for each input element
on the screen. This object is named creditCard and is added to the scope
just like the others. Within the creditCard object define a property to map to
each input element.

vm.creditCard = {
 creditCardId: null,
 cardType: null,
 nameOnCard: null,
 cardNumber: null,
 securityCode: null,
 expMonth: null,
 expYear: null,
 billingPostalCode: null
};

Load Mock Data for Drop-Down Lists
Looking at Figure 2 you know you need to load the three drop-down lists for
credit card types, months and years. Let’s finish building the routines you
added to the creditCard controller to load the data into the properties of our
controller. For this first sample you are going to hard-code the various values.
In a later article you learn to connect to a back-end through a Web API to
retrieve credit card type data from a SQL Server database table, and to load
the months and years.

 Load Mock Data for Drop-Down Lists

Build a Credit Card Entry Page using Angular 19
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Load Credit Card Types
Open up the \app\creditcard\creditcard.controller.js file and locate the
loadCardTypes() function. Modify the code to look like the code shown
below:

function loadCardTypes() {
 vm.cardTypes.push({ cardType: 'Visa' });
 vm.cardTypes.push({ cardType: 'MasterCard' });
 vm.cardTypes.push({ cardType: 'American Express' });
 vm.cardTypes.push({ cardType: 'Discover' });

 vm.selectedCardType = vm.cardTypes[0];
}

In the above code push a new object with a single property onto the
cardTypes array. The property is called cardType and you specify a value to
display in the drop-down list on the HTML page. Feel free to add as many
different card types as you wish to this list. Lastly, take the first cardType
object and assign it to the selectedCardType property in your scope.
When you build the <select> HTML element you are going to use two Angular
attributes; ng-model and ng-options. The ng-model attribute binds to the
vm.selectedCardType property in the CreditCardController. The ng-options
attribute specifies how to load the <select> element. Go to the creditcard.html
page, locate the types <select> element and add these two attributes.

<select id="types"
 name="types"
 class="form-control"
 ng-model="vm.selectedCardType"
 ng-options="item.cardType for item in vm.cardTypes
 track by item.cardType">
</select>

You can think of the ng-options attribute like a foreach loop in C#. Here
would be the equivalent pseudo-code in C# for what the ng-options attribute
is doing.

foreach (item in vm.cardTypes) {
 <option value=”item.cardType”>item.cardType</option>
}

Let’s break down each piece of the ng-options attribute value. The “for item”
defines a local variable with the name of “item”. The “in vm.cardTypes”
specifies the property in the scope of your controller to retrieve the collection
of data from. The “item.cardType” before the “for item” is the name of the

Build a Credit Card Entry Page using Angular

20 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

property within each object in the cardType array you wish to display in the
text portion of the drop-down. The “track by item.cardType” is the property
from which to retrieve the value to put into the value portion of each <option>
element within the <select>.

Load Years
I am seeing more and more credit card forms asking for a year up to 20 years
in the future. So, for this sample, you load 20 years into the vm.years array.
This array is simply an array of integer values. No object is necessary for
each element in this array.

function loadYears() {
 var year = new Date().getFullYear();

 for (var i = 0; i < 20 ; i++) {
 vm.years.push((year + i));
 }

 vm.creditCard.expYear = year;
}

Go to the creditcard.html page, locate the expYears <select> element and
add these two attributes.

<select id="expYears"
 name="expYears"
 class="form-control"
 ng-model="vm.creditCard.expYear"
 ng-options="item for item in vm.years track by item">
</select>

The ng-model attribute binds directly to the vm.creditCard.expYear property
in the CreditCardController. Since each item in the years array is just an
integer, that integer value is assigned to the expYear property.
The ng-options attribute uses just the variable name ‘item’ to bind to the text
portion of the drop-down and to the value portion. Since each element is just
an integer value, you do not specify any property name within ‘item’, you just
use ‘item’ itself.

Load Months
The loadMonths() function is similar to the loadCardTypes() function in that
you are creating an object to load into the vm.months array. The month object
contains two properties; monthNumber and monthName. The monthNumber

 Load Mock Data for Drop-Down Lists

Build a Credit Card Entry Page using Angular 21
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

property will be used in the value portion of the drop-down list, while the
monthName property will be used in the text portion of the drop-down.
After loading the objects, set the expYear and expMonth of the vm.creditCard
object to the next month, or January if the current month is 12, and to either
the current year, or the next year if the current month is 12. Below is the code
to load the months and set the expYear and expMonth.

function loadMonths() {
 var today = new Date();

 vm.months.push({ monthNumber: 1, monthName: 'January' });
 vm.months.push({ monthNumber: 2, monthName: 'February' });
 vm.months.push({ monthNumber: 3, monthName: 'March' });
 vm.months.push({ monthNumber: 4, monthName: 'April' });
 vm.months.push({ monthNumber: 5, monthName: 'May' });
 vm.months.push({ monthNumber: 6, monthName: 'June' });
 vm.months.push({ monthNumber: 7, monthName: 'July' });
 vm.months.push({ monthNumber: 8, monthName: 'August' });
 vm.months.push({ monthNumber: 9, monthName: 'September' });
 vm.months.push({ monthNumber: 10, monthName: 'October' });
 vm.months.push({ monthNumber: 11, monthName: 'November' });
 vm.months.push({ monthNumber: 12, monthName: 'December' });

 // Figure out which month to select
 // Make it next month by default
 vm.creditCard.expMonth = today.getMonth() + 2;
 // If past December, then make it January of the next year
 if (vm.creditCard.expMonth > 12) {
 vm.creditCard.expMonth = 1;
 vm.creditCard.expYear = vm.creditCard.expYear + 1;
 }
 vm.selectedMonth = vm.months[vm.creditCard.expMonth - 1];

 // Set the page UI flag as not loading anymore
 vm.uiState.isLoading = false;
}

Go to the creditcard.html page, locate the expMonths <select> element and
add these two attributes.

<select id="expMonths"
 name="expMonths"
 class="form-control"
 ng-model="vm.selectedMonth"
 ng-options="item.monthName for item
 in vm.months
 track by item.monthNumber">
</select>

Just like for the card types, this <select> element is binding to the
selectedMonth object in your controller.

Build a Credit Card Entry Page using Angular

22 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

The last thing the loadMonths function does is to set the isLoading property of
the vm.uiState object to false. If you were calling the Web API in each of the
above functions, these calls might take a little time. In the HTML page display
a “Please wait while loading…” message to the user until the isLoading
property is set to false. This is where that property is set to false, which
makes the message disappear.

Bind Credit Card Input Fields
With your controller built and a creditCard object with properties to bind to the
input fields, the only thing left to do is to perform the binding. Add a hidden
input field directly below the <form> tag in your HTML. This hidden field is for
the primary key value for the credit card record you add to a SQL Server
database table. Initially it will be null, but after you add a record this value will
be filled in and passed back from the Web API.

<input type="hidden"
 ng-model="vm.creditCard.creditCardId" />

Locate the nameOnCard input field and bind to the creditCard object by
adding the following ng-model attribute.

<input id="nameOnCard"
 name="nameOnCard"
 ng-model="vm.creditCard.nameOnCard"
 class="form-control"
 placeholder="Name on Card"
 title="Name on Card"
 type="text" />

Locate the cardNumber input field and bind to the creditCard object by adding
the following ng-model attribute.

<input id="cardNumber"
 name="cardNumber"
 ng-model="vm.creditCard.cardNumber"
 class="form-control"
 placeholder="Credit Card Number"
 title="Credit Card Number"
 type="text" />

Locate the securityCode input field and bind to the creditCard object by
adding the following ng-model attribute.

 Summary

Build a Credit Card Entry Page using Angular 23
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

<input id="securityCode"
 name="securityCode"
 ng-model="vm.creditCard.securityCode"
 class="form-control"
 placeholder="Security Code"
 title="Security Code"
 type="text" />

Locate the billingPostalCode input field and bind to the creditCard object by
adding the following ng-model attribute.

<input id="billingPostalCode"
 name="billingPostalCode"
 ng-model="vm.creditCard.billingPostalCode"
 class="form-control"
 placeholder="Billing Postal Code"
 title="Billing Postal Code"
 type="text" />

At this point you can run the sample and you should see the credit card page
displayed with the appropriate data in the drop-down lists.

Summary
In this article you created a new empty web application in Visual Studio,
added Angular and Bootstrap to display a credit card page. You built a few
different JavaScript files to build an Angular module and routes for the SPA.
You then built a credit card controller which loads data into arrays for
displaying in drop-down lists on the credit card page. You also setup the
appropriate HTML to display error messages, a loading message, and the
various input fields for accepting credit card information from a user. In the
next article you will learn to get data from the Web API instead of using hard-
coded data.

Build a Credit Card Entry Page using Angular

24 Build a Credit Card Entry Page using Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Sample Code
You can download the code for this sample at www.pdsa.com/downloads.
Choose the category “PDSA Articles”, then locate the sample Code
Magazine: Angular Credit Card Page – Part 1.

http://www.pdsa.com/downloads

	Build a Credit Card Entry Page using Angular – Part 1
	Overview of SPA Architecture
	Build the Main SPA Page
	Build Angular Folder and JavaScript Files
	Build Index Page JavaScript Files

	Build the Credit Card HTML
	Add Credit Card Controller
	Error Message Area
	Loading Message Area
	Input Fields

	Credit Card Controller
	Load Mock Data for Drop-Down Lists
	Load Credit Card Types
	Load Years
	Load Months

	Bind Credit Card Input Fields
	Summary
	Sample Code

