

Introduction to Angular Routing
To build a Single-Page Application (SPA) using Angular (v1.x), you typically
build a single HTML page and inject HTML fragments within this one page as
the user navigates within your application. Navigation in Angular employs a
mechanism called routing. This blog post explores how to perform navigation
within a SPA using Angular routing.

Server-Side Development
As you make the transition from server-side development to client-side
development, you will find many of the same concepts that you employ on the
server-side have equivalents on the client-side. Of course, they are done
differently, but the concepts are there nonetheless.
When developing server-side web applications with MVC or Web Forms, you
use a common layout page for all of the standard “chrome” you want around
your content. This chrome is your header, footer and maybe a sidebar. The
header consists of a menu system and maybe some graphics. The footer
might have a copyright and some additional links. You do not want to
duplicate the header and footer on each page in your application as that is a
maintenance nightmare. Instead, each MVC or Web Forms application has a
special “layout” page where you create the chrome. You create your content
pages with the HTML fragments you wish to display to the user, and inject
those fragments within the layout page.
MVC has a special page named _Layout.cshtml located under the \Shared
folder (Figure 1). This page has a piece of Razor code called @RenderBody()
which tells MVC into where to inject your fragments of HTML and Razor code.
Web Forms uses a concept called a “Master Page”, shown in Figure 2 as
Site.Master, which uses a <asp:ContentPlaceHolder /> control to specify
where to inject your content pages.
Both these approaches keep the chrome for your web application in a single
location. This makes changes to your website easy to accomplish. When
creating a SPA using Angular (or any other client-side framework), you should
strive to use this same technique.

Angular Routing

2 Angular Routing
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 1: MVC uses a shared layout page

Figure 2: Web Forms uses a master page

 Angular ng-view Directive

Angular Routing 3
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Angular ng-view Directive
Angular has the same mechanism for defining a HTML page with the chrome,
and a directive for specifying where to inject the HTML fragments that make
up each content page. You typically create an index.html page with the
chrome and a single <div> tag that uses the Angular directive ng-view
(Figure 3). This directive is what is used to specify the location in which to
inject the content pages.
It is important to note that only one instance of ng-view may be used in your
Angular application. In other words, you cannot nest an ng-view within
another ng-view. If you are using this approach correctly, you shouldn’t have
to nest ng-view anyway.

Figure 3: Angular uses any html page for the chrome

Download Routing JavaScript File
In order to use Angular routing, download the angular-route.js file into your
project. If you are using Visual Studio, you may use the NuGet Package
Manager to search for and install the AngularJS.Route package. Or, open a
browser and navigate to https://code.angularjs.org/1.5.8/ and download the
angular.route.js file from there. Either way, once you download this script file

https://code.angularjs.org/1.5.8/

Angular Routing

4 Angular Routing
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

you will want to reference it from your main HTML page. Be sure to place it
after you have referenced the angular.js file as shown in the following code
snippet.

<script src="scripts/angular.js"></script>
<script src="scripts/angular-route.js"></script>

Declare Your Intention to use Routing
The first step in any Angular application is to define a module that is the main
entry point for your application. You typically define a module using the
following code.

(function () {
 'use strict';

 angular.module('app', []);
})();

As you are going to be using routing in your Angular application, this is now a
dependency that you need to tell Angular about. The second parameter to the
module() is an array of strings for you to specify the names of any
dependencies needed for your application. In the code snippet below you are
passing in a single element array with the value being ‘ngRoute’. The
‘ngRoute’ value is defined as a provider in the angular-route.js file you
downloaded and included in your project.

(function () {
 'use strict';

 angular.module('app', ['ngRoute']);
})();

 The HTML Page

Angular Routing 5
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

The HTML Page
The complete HTML page, index.html, is shown in Listing 1. This page has a
couple of anchor tags <a> that are used for our routing sample. In addition
the <div ng-view> element is also defined within a Bootstrap row and column.
This is where all HTML fragments will be displayed when you route to a new
path.

<!doctype html>
<html>
<head>
 <title>Routing Sample</title>

 <link href="Content/bootstrap.min.css"
 rel="stylesheet" />
</head>
<body>
 <div ng-app="app"
 ng-controller="IndexController as vm"
 class="container">

 <div class="row">
 <div class="col-sm-12">
 <a href="#/page1"
 class="btn btn-primary">Page 1
 <a href="#/page2"
 class="btn btn-primary">Page 2
 </div>
 </div>

 <div class="row">
 <div class="col-sm-12">
 <div ng-view></div>
 </div>
 </div>
 </div>

 <script src="scripts/angular.js">
 </script>
 <script src="scripts/angular-route.js">
 </script>

 <script src="app.module.js"></script>
 <script src="index.controller.js">
 </script>
</body>
</html>

Listing 1: The HTML page for our routing sample

Angular Routing

6 Angular Routing
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

The index.controller.js file that is referenced in the above web page is an
empty function as there is no functionality needed for this sample web page.
The contents of the index.controller.js file is shown below just for
completeness.

(function () {
 'use strict';

 angular.module('app')
 .controller('IndexController',
 IndexController);

 function IndexController() {
 }
})();

Define Your Routes
After you have told Angular that you are using routing, it is now time to create
some routes. Within the app.module.js file (or create another file called
index.route.js) add the code shown in Listing 2.

angular.module('app')
.config(function ($routeProvider) {
 $routeProvider
 .when('/',
 {
 template: ''
 })
 .when('/page1',
 {
 template: '<p>This is some text for Page1</p>'
 })
 .when('/page2',
 {
 template: '<h2>Page 2</h2>'
 });
});

Listing 2: Define routes to your Angular application.

The code in Listing 2 retrieves the module named ‘app’ from Angular. It then
chains the config() function to instantiate the routes for the module. Pass in
your custom function to the config() function. This function is passed the

 Define Your Routes

Angular Routing 7
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

$routeProvider provider, which is defined in the angular-route.js file. You use
this $routeProvider variable to define the routes you wish to configure using
the when() function. Each when() function is passed two parameters. The first
parameter is a string that is matched up with the path you define in your web
page. For example, matches up with
when(‘/page1’). The # symbol is used so the browser does not try to navigate
to a page. Angular looks for anything that starts with “#/” and knows that you
are using a route. Figure 4 shows the index.html page and the code in the
$routeProvider definition and how they match up.

Figure 4: Use a # symbol to specify a route

The second parameter to the when() function is an Angular route object. This
object has several properties that can be set. For this initial sample the
template property is set. The template property lets you define any HTML
code you wish to display in the ng-view directive when this route is invoked. In
Figure 5 and Figure 6 you can see both the final web page and the
corresponding code in the $routeProvider which caused that HTML to be
displayed.

Angular Routing

8 Angular Routing
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 5: Page 1 shows some standard text

Figure 6: Page 2 shows some bold text

Handling a Bad Link
If you have a link in your HTML page that does not have a corresponding
when() function configured, you should display some error text to your user.

 Avoid Hard-Coding HTML

Angular Routing 9
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

After the last when() function is called, add an otherwise() function as shown
in the following code snippet.

.otherwise(
{
 template: '<h2>Bad Link!</h2>'
});

Avoid Hard-Coding HTML
The problem with the previous example is you hard-coded some HTML within
your JavaScript. It is a best practice to keep all your HTML in .html files in
your project. Instead of defining your routes using the template property, use
the templateUrl property instead as shown in Listing 3. The templateUrl
property must be set with the full path in relation to the index.html page. In
this sample, all the .html pages are in the same folder. However, you might
need to specify something like the following: templateUrl:
‘app/templates/page1.template.html’.

Angular Routing

10 Angular Routing
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

angular.module('app')
.config(function ($routeProvider) {
 $routeProvider
 .when('/',
 {
 template: ''
 })
 .when('/page1',
 {
 templateUrl: 'page1.template.html'
 })
 .when('/page2',
 {
 templateUrl: 'page2.template.html'
 })
 .when('/error',
 {
 templateUrl: 'badlink.template.html'
 })
 .otherwise(
 {
 redirectTo: '/error'
 });
});

Listing 3: Use the templateUrl property to keep HTML code in .html files

In Listing 3 another new property was introduced in the otherwise() function,
redirectTo. The redirectTo property allows you to redirect to another route.
This property is most typically used in the otherwise() function. In the sample
in Listing 3 if you attempted to go to a href such as the one shown in the
following code snippet, you would be redirected to the path /error, which
would then display the HTML in the badlink.template.html file.

<a href="#/badLink"
 class="btn btn-primary">
 Bad Link

Another option for the otherwise() function is to simply specify a string as the
first parameter. If a string is specified instead of an object, it interprets the
string as a redirect to.

 Summary

Angular Routing 11
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

.otherwise('/error')

Summary
In this blog post you learned the basics of routing in Angular. Just like server-
side web development, the concept of having a single place for all your
chrome is also present client-side. The ng-view directive is used to specify
where in your HTML page you wish to display other HTML pages. You will
need to download angular-route.js in order to use routing in your Angular web
pages.

Sample Code
You can download the code for this sample at www.pdsa.com/downloads.
Choose the category “PDSA Blog”, then locate the sample PDSA Blog
Sample: Introduction to Angular Routing.

http://www.pdsa.com/downloads

	Introduction to Angular Routing
	Server-Side Development
	Angular ng-view Directive
	Download Routing JavaScript File
	Declare Your Intention to use Routing
	The HTML Page
	Define Your Routes
	Handling a Bad Link

	Avoid Hard-Coding HTML
	Summary
	Sample Code

