

Call the Web API from Angular
This is the 3rd blog post in our series on Angular. The first part entitled Get
Started with Angular shows you how to add Angular to a project. The
second part, Build Lists of Data Using Angular, showed you how to build
lists of data using hard-coded arrays of object literals. You should read those
two blog entries first if you are not familiar with adding Angular to a project,
don’t know what a module or a controller is, or want to understand basic data
binding.
In this blog post, you will take the product page with the HTML table and call
a Web API to retrieve product data. The data returned from the Web API
builds the HTML table of products using the ng-repeat directive.
To prepare for calling a Web API from your Angular controller, you need to do
a little setup. For purposes of this blog post, you will be doing the following
things.

1. Build Product classes to hold product data
2. Add a Web API Controller to your Project
3. Ensure you have configured ASP.NET to use the Web API
4. Call the Web API from Angular

Build Product Classes
Instead of using JavaScript object literals to populate an HTML table, you
want to retrieve a set of objects from some data store on a server. Web API
will take one of your classes and serialize it into a JSON object. To start,
create a class named TrainingProduct that contains all of the properties to
represent a product object. Create the class shown below in your web project.

Build Lists of Data with Angular

2 Build Lists of Data with Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

public class TrainingProduct
{
 public int ProductId { get; set; }
 public string ProductName { get; set; }
 public DateTime IntroductionDate { get; set; }
 public string Url { get; set; }
 public decimal Price { get; set; }
 public int CategoryId { get; set; }
}

Next, build a class named TrainingProductManager that is responsible for
building a collection of TrainingProduct objects. You could use the Entity
Framework, Haystack or any other data layer you want to retrieve data from a
Product table in a database. To keep things simple in this post, I am just
going to create some mock data as shown in the code below.

 Build Product Classes

Build Lists of Data with Angular 3
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

public class TrainingProductManager
{
 public List<TrainingProduct> Get()
 {
 List<TrainingProduct> ret = new List<TrainingProduct>();

 // TODO: Add your own data access method here
 ret = CreateMockData();

 return ret;
 }

 protected List<TrainingProduct> CreateMockData()
 {
 List<TrainingProduct> ret = new List<TrainingProduct>();

 ret.Add(new TrainingProduct()
 {
 ProductId = 1,
 ProductName = "Extending Bootstrap with CSS,
 JavaScript and jQuery",
 IntroductionDate = Convert.ToDateTime("6/11/2015"),
 Url = "http://bit.ly/1SNzc0i",
 Price = Convert.ToDecimal(29.00),
 CategoryId = 1
 });

 ret.Add(new TrainingProduct()
 {
 ProductId = 2,
 ProductName = "Build your own Bootstrap Business
 Application Template in MVC",
 IntroductionDate = Convert.ToDateTime("1/29/2015"),
 Url = "http://bit.ly/1I8ZqZg",
 Price = Convert.ToDecimal(29.00),
 CategoryId = 1
 });

 // MORE ENTRIES HERE
}

Once you have a generic List of TrainingProduct objects, it is this data that is
returned from the Web API. As I stated previously, Web API will automatically
serialize this generic List into an array of JSON objects and return that to your
Angular controller.

Build Lists of Data with Angular

4 Build Lists of Data with Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Add Web API to your Project
Depending on how you built your project you may or may not have the
appropriate DLLs and other necessary artifacts to support an ASP.NET Web
API controller class. I am going to assume that you have not used a Web API
in your project and show you how to add them to your project.
Add a new folder \Controllers-Api. While it is not necessary to add a new
folder to contain your Web API controller classes, I like keeping them
separate from my MVC controllers.
Right mouse click on your Visual Studio project and select Add | New Folder
from the content-sensitive menu. Set the name to Controllers-Api and press
the enter key.
Add a new controller by right-mouse clicking on the new folder you just added
and select Add | Web API Controller Class (v2.1). NOTE: If this option does
not show up on your Add menu, select New Item…, drill into the Web | Web
API folder on the dialog and select Web API Controller Class (v2.1). Set the
name to ProductController and click the OK or the Add button.
Within the ProductController class locate the following method stub created
for you by Visual Studio.

// GET api/<controller>
public IEnumerable<string> Get() {
 return new string[] { "value1", "value2" };
}

Replace this method with the following code. NOTE: You may need to include
the Namespace in which you created the TrainingProduct and
TrainingProductManager classes.

 Configure Web API Routes

Build Lists of Data with Angular 5
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

[HttpGet()]
public IHttpActionResult Get() {
 IHttpActionResult ret = null;
 TrainingProductManager mgr =
 new TrainingProductManager();
 List<TrainingProduct> list;

 // Get all Products
 list = mgr.Get();
 if (list.Count > 0) {
 ret = Ok(list);
 }
 else {
 ret = NotFound();
 }

 return ret;
}

In the code above you create an instance of the TrainingProductManager
class as you use that to get a collection of TrainingProduct objects. The return
value from your Web API should always be an instance of an
IHttpActionResult. This message includes an HTTP status code such as 200
or 404 plus any data you wish to send. In this case you use the Ok() method
that is part of the ApiController class. This method accepts any data you wish
to send, in this case the list of products, and sets a 200 status code. This is
where the Web API framework automatically serializes your data into JSON.
If there are no products to return use the NotFound() method to return a 404
status code to inform the front end that no data was found.

Configure Web API Routes
If you did not have any Web API features in your project before, you may
need to register your intent to use the Web API with ASP.NET. This means
that you have to configure the route that MVC should follow to locate any
Web API controller so MVC knows they are different from a page controller.
To do this, create a different prefix for calling your API controllers such as
“api”. The easiest method to accomplish this registration is to create a class
called WebApiConfig. Add this class to the \App_Start folder in your project.
Type the following code into this new class. NOTE: Check to make sure this
class does not already exist in your \App_Start folder.

Build Lists of Data with Angular

6 Build Lists of Data with Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

using System.Web.Http;

public static void Register(
 HttpConfiguration config)
{
 // Web API routes
 config.MapHttpAttributeRoutes();

 // Add route for our API calls
 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id =
 RouteParameter.Optional }
);
}

The above code first configures the ASP.NET runtime to allow for Web API
calls by calling the MapHttpAttributeRoutes method. Next, it adds a new
HttpRoute and sets up a new template with the “api” prefix. When you make a
call to your Web API controllers you always prefix them with “api” to
distinguish them from a normal MVC page controller. You can use any prefix
you desire, but “api” is an industry convention.
Now that you have this class and method defined you need to call it from the
Application_Start method in the Global.asax. Open the Global.asax file and
add two new using statements. The first will be to the System.Web.HTTP
namespace. This is needed to access the GlobalConfiguration class that is
responsible for configuring the ASP.NET runtime with your new Web API
template. The second namespace will the name of your project, followed by
App_Start which is the folder name used when you create a class within that
folder.

using System.Web.HTTP;
using [YOUR PROJECT NAME].App_Start;

Locate the Application_Start() method and add the line of code
GlobalConfiguration.Configure() above the RouteConfig.RegisterRoutes()
method call as shown in the code below.

 Call Web API from your Controller

Build Lists of Data with Angular 7
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

protected void Application_Start() {

 AreaRegistration.RegisterAllAreas();
 FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);

 GlobalConfiguration.Configure(WebApiConfig.Register);

 RouteConfig.RegisterRoutes(RouteTable.Routes);
 BundleConfig.RegisterBundles(BundleTable.Bundles);
}

Call Web API from your Controller
Now that you have all the classes in place for a Web API call, you are now
ready to call it from your Angular code. Open up the productController.js file
and modify the beginning of the function PTCController. Add one more core
service that Angular provides, namely the data service that communicates
with remote HTTP servers via a browser’s built-in mechanism such as
XMLHttpRequest or JSONP. The name of this core Angular service is passed
to your controller as $http. Just like you did with your $scope variable, let’s
assign this to your own variable. Use the name dataService in this sample.

function PTCController($scope, $http) {
 var vm = $scope;
 var dataService = $http;

Locate where you declared the vm.products variable in the previous blog post
and modify the variable to be an empty array instead of hard-coded object
literals as shown in the code below.

// Expose a 'products' collection
vm.products = [];

In future posts I will cover how to deal with exceptions that come back from
Web API calls, but for now, let’s just create a function to handle any
exceptions by grabbing the data.ExceptionMessage property that comes back
from the Web API calls.

Build Lists of Data with Angular

8 Build Lists of Data with Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

function handleException(error) {
 alert(error.data.ExceptionMessage);
}

Write a function called productList() to make the Web API call using the data
service passed into our controller. The data service provided by Angular
exposes several shortcut methods corresponding to the appropriate HTTP
verbs, namely; get, post, put, delete and a few others. Since we are
performing a GET to retrieve our product data from our Web API, call the
get() method on the data service.

function productList() {
 dataService.get("/api/Product")
 .then(function (result) {
 vm.products = result.data;

 }, function (error) {
 handleException(error);
 });
}

Let’s break down the various components of the get() method. Here is an
overview of this function.

$http.get("URL TO WEB API")
 .then(success function (result){},
 error function (error) {});

The parameter you pass to the get() method is the URL to your Web API
controller. This method returns a “promise” which is nothing more than an
object that takes care of making an asynchronous call for you. The chained
method then() is used to inform the promise of what function to call if the Web
API is successful and which function to call if an error is returned. In each
case an object is passed back to you with some properties that you can query
to see what happened. The objects are the same for both success and failure
and contain the following properties:

data = Either a string or object containing data from your Web API call
status = An HTTP status code number such as 200 or 404
headers = A function to allow you to get the headers from the call
config = A configuration object that was used for sending the request
statusText = An HTTP status text returned from the call

Look at the productList() function you wrote and see that in the success
function, you take the data property from the result parameter and assign that
to your array named vm.products. By doing this, you allow the data binding of

 Call Web API from your Controller

Build Lists of Data with Angular 9
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Angular to take over and update any bound items on the page. In this case
the ng-repeat attached to the <tr> on your HTML table causes a redrawing of
your HTML table based on the new data in the array.
Now that you have the function productList() written, you need to call it when
you enter your controller. Immediately after declaring all your variables on
your scope, call the productList() function. Below is what the complete
productController.js file should now look like.

(function () {
 'use strict';

 angular.module('ptcApp')
 .controller('PTCController', PTCController);

 function PTCController($scope, $http) {
 var vm = $scope;
 var dataService = $http;

 // Expose a 'product' object
 vm.product = {
 ProductName: 'Pluralsight Subscription'
 };
 // Create a list of categories
 vm.categories = [
 { CategoryName: 'Videos' },
 { CategoryName: 'Books' },
 { CategoryName: 'Articles' }
];
 vm.products = [];

 productList();

 function handleException(error) {
 alert(error.data.ExceptionMessage);
 }

 function productList() {
 dataService.get("/api/Product")
 .then(function (result) {
 vm.products = result.data;

 }, function (error) {
 handleException(error);
 });
 }
 }
})();

The last thing you need to do is to modify the building of the product table
data. Let’s add a couple more columns to our HTML table using the following
code:

Build Lists of Data with Angular

10 Build Lists of Data with Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

<tr ng-repeat="product in products">
 <td>{{product.ProductName}}</td>
 <td>{{product.IntroductionDate | date: mm/dd/yyyy }}</td>
 <td>{{product.Url}}</td>
 <td class="text-right">{{product.Price | currency: $ }}</td>
</tr>

In this new ng-repeat you are adding the IntroductionDate and Url to the
table. Notice the use of the “date” filter that assists you in formatting the
IntroductionDate data. Figure 1 shows you what the final HTML product table
looks like after running this sample.

Figure 1: A list of products retrieved via the Web API.

Summary
The $http data service is built-in to Angular. All you need to do is to add an
additional parameter in your controller function. It is recommended you assign
the $http variable to your own variable name for flexibility. Also in this post
you learned to configure your web project to make calls to a Web API.

 Sample Code

Build Lists of Data with Angular 11
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Sample Code
You can download the code for this sample at www.pdsa.com/downloads.
Choose the category “PDSA Blog”, then locate the sample PDSA Blog
Sample: Call the Web API from Angular.

http://www.pdsa.com/downloads

	Call the Web API from Angular
	Build Product Classes
	Add Web API to your Project
	Configure Web API Routes
	Call Web API from your Controller
	Summary
	Sample Code

