

Build Lists of Data with Angular
This is the 2nd blog post in our series on Angular. The first part entitled Get
Started with Angular shows you how to add Angular to a project. You should
read that blog first if you are not familiar with adding Angular to a project,
don’t know what a module or a controller is, or want to understand basic data
binding.
In this blog post you will build a couple of different types of lists of data using
the ng-repeat directive. Building unordered lists and HTML tables is very
straight-forward in Angular. As with anything in Angular, you need to have a
variable defined on the $scope variable that contains the data you wish to
display. Use the ng-repeat directive and data binding to iterate over the data
and create bulleted list items or <tr> and <td> elements.

Create an Unordered List
Start with the project from the first blog post entitled Get Started with
Angular. Open the project, then locate and open the
\Scripts\productController.js file. Add a new variable to the $scope variable in
the controller function as shown in the code highlighted in bold below.

function PTCController($scope) {
 var vm = $scope;

 // Create a list of categories
 vm.categories = [
 { CategoryName: 'Videos' },
 { CategoryName: 'Books' },
 { CategoryName: 'Articles' }
];
}

This code creates an array of object literals. Each object is a category object
with a single property called CategoryName. This CategoryName property is
set to a string such as ‘Videos’, ‘Books’, or ‘Articles. These string values are
to be displayed in an unordered list on our HTML page.

Build Lists of Data with Angular

2 Build Lists of Data with Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Locate the AngularSample01.html page in the root of the project. Copy and
paste this HTML page back into the root of the project. Rename this newly
copied file to AngularSample02.html. Replace everything within the <div
class=”container”> with the following HTML.

<h3>Categories</h3>
<div class="row">
 <div class="col-xs-12">

 <li ng-repeat="category in categories">
 {{category.CategoryName}}

 </div>
</div>

The ng-repeat (also written as ngRepeat) directive contains two variable
names and the word ‘in’. The first variable name ‘category’ is a name that you
are using for a local variable within this loop. Think of this like the variable
name you create in a foreach statement in C#. The second variable name,
‘categories’ refers to the categories variable you created in the controller on
the $scope variable. The ‘in’ word simply separates the local variable from the
variable on the $scope. Again, this is just like a foreach statement in C#.
The ng-repeat directive instructs Angular to iterate over the collection of
objects in the categories variable and place each object into the variable
named category. You are also instructing Angular to create a new for
each object in the collection. Angular then looks for any data binding tokens
between the and the tags. If it finds one, it evaluates the expression.
In this case the expression says to look for a property name called
CategoryName on the object just retrieved from the categories collection. If it
can get the value from the CategoryName property it displays that value
between the and the elements.
At this point you should be able to run the page. Go ahead and run the page,
and if you did everything correctly, you should see a page that looks similar to
Figure 1.

 Create an HTML Table

Build Lists of Data with Angular 3
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Figure 1: An unordered list of categories

Create an HTML Table
Let’s now use the ng-repeat directive to build an HTML table of products.
Create an object literal array of product objects to build that table. Add a new
variable named ‘products’ to your $scope variable in your controller function,
as shown in the sample below.

function PTCController($scope) {
 var vm = $scope;

 vm.products = [
 { ProductName: 'Video 1', Price: 10 },
 { ProductName: 'Video 2', Price: 10 },
 { ProductName: 'Book 1', Price: 20 },
 { ProductName: 'Article 1', Price: 5 },
 { ProductName: 'Article 2', Price: 6 },
];
}

The above code creates an array of object literals where each one is a
product object. These product objects contain two properties: ProductName
and Price. Some default data has been filled in to give us something to
display as shown in Figure 2.

Build Lists of Data with Angular

4 Build Lists of Data with Angular
Copyright © 2016 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Locate the AngularSample02.html page in the root of the project. Copy and
paste this HTML page back into the root of the project. Rename this newly
copied file to AngularSample03.html. Replace everything within the <div
class=”container”> with the following HTML.

<h3>Products</h3>
<table class="table table-bordered table-striped
 table-condensed">
 <thead>
 <tr>
 <th>Product Name</th>
 <th class="text-right">Price</th>
 </tr>
 </thead>
 <tbody>
 <tr ng-repeat="product in products">
 <td>{{product.ProductName}}</td>
 <td class="text-right">
 {{product.Price | currency: $ }}
 </td>
 </tr>
 </tbody>
</table>

In the code above you use the ng-repeat directive to build a list of <tr>
elements for each product object in the products collection. For each product
object build two <td> elements. The first <td> element contains the
ProductName value. The second <td> element displays the price; however,
there is something a little extra in the data binding token.
This something extra is called a ‘filter’ and is used to format the data coming
from the data binding expression. You place a vertical pipe after the property
being bound, then add the filter named ‘currency’, followed by a colon and a
US dollar sign symbol ($). This instructs Angular that it should take the price
value, treat it as a decimal value, and format it according to United States
currency formatting rules. There are other filters you can use in data binding:
filter, number, date, json, lowercase, uppercase, limitTo, orderBy. You can
learn more about these filters at https://docs.angularjs.org/api/ng/filter.

https://docs.angularjs.org/api/ng/filter

 Summary

Build Lists of Data with Angular 5
Copyright © 2016 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Figure 2: A table created from Angular data binding

Summary
In this blog post you learned to use the ng-repeat directive to create a list of
items. You first learned to build an unordered list using an array of category
objects. Next, you built an HTML table of product objects and even saw how
to format a currency value using a filter.

Sample Code
You can download the code for this sample at www.pdsa.com/downloads.
Choose the category “PDSA Blog”, then locate the sample PDSA Blog
Sample: Build Lists of Data with Angular.

http://www.pdsa.com/downloads

	Build Lists of Data with Angular
	Create an Unordered List
	Create an HTML Table
	Summary
	Sample Code

