
 

Get Started with Angular 
Sometimes the best way to learn a new technology is to start using it -- a little 
at a time. In this series of articles, I will show you how to use Angular in a 
step-by-step manner. You start with a simple example of adding Angular to a 
project and creating an Angular module and controller. Once you have the 
controller, you will see how to expose data so it can be bound to UI elements 
on your HTML page. 

Adding Angular to a Project 
Create a new ASP.NET Web Application project, or load one of your existing 
web projects. Right mouse click on the web project, not the solution, and 
choose Manage NuGet Packages… from the menu. You will then see a 
screen that looks like Figure 1. 



Get Started with Angular 

2 Get Started with Angular 
Copyright © 2016 by PDSA, Inc. 

All rights reserved worldwide.  Reproduction is strictly prohibited.  

 
Figure 1: Use the Manage NuGet Packages menu to add Angular to your project. 

Click on the Browse tab (Figure 2) and type in AngularJS and press the enter 
key. Select AngularJS.Core from the list and click on the Install button. Visual 
Studio will add a few files to your project and you may now use Angular in 
your project. 

 
Figure 2: Select AngularJS.Core from the list. 



 Adding Angular to a Project 

Get Started with Angular 3 
Copyright © 2016 by PDSA, Inc. 
All rights reserved.  Reproduction is strictly prohibited. 

If you look in the \Scripts folder you should see a few files that start with 
“angular”. The only one you will use on your page for purposes of learning 
Angular is the angular.min.js. 

Create a Test Page 
Add a simple HTML page that you can use to test a few concepts of Angular. 
Right-mouse click on the project and select Add | HTML Page. Type in the 
name AngularSample01 and click the OK button. Drag and drop the 
Content\bootstrap.min.css into the <head> element on the page. Drag and 
drop the following script files before the </body> tag; Scripts\jquery-
VER#.min.js, Scripts\bootstrap.min.js, and Scripts/angular.min.js. Type in the 
rest of the HTML shown below. 

<!DOCTYPE html> 
<html> 
<head> 
  <title>Angular Sample</title> 
  <meta charset="utf-8" /> 
  <link href="Content/bootstrap.min.css" rel="stylesheet" /> 
</head> 
<body> 
  <div class="container"> 
    <div class="form-group"> 
      <label for="ProductName">Product Name</label> 
      <input type="text" class="form-control" /> 
    </div> 
    <div class="row"> 
      <div class="col-xs-12"> 
        <label for="ProductName">Product Name Entered</label> 
        <p class="form-control-static"></p> 
      </div> 
    </div> 
  </div> 
 
  <script src="Scripts/jquery-1.10.2.min.js"></script> 
  <script src="Scripts/bootstrap.min.js"></script> 
  <script src="Scripts/angular.min.js"></script> 
</body> 
</html> 

 



Get Started with Angular 

4 Get Started with Angular 
Copyright © 2016 by PDSA, Inc. 

All rights reserved worldwide.  Reproduction is strictly prohibited.  

Create Angular Module 
Right mouse click on the Scripts folder and select Add | JavaScript File from 
the menu. Type in app in the text box and click the OK button. In this new 
JavaScript file, add the following code. 

(function () { 
  'use strict'; 
 
  angular.module('ptcApp', []); 
})(); 

The above code uses an Immediately Invoked Function Expression (IIFE) to 
access the angular framework and create a new module. The new module 
name is passed as a string in the first parameter of the module function. In 
this case, that module name is ‘ptcApp’. Feel free to name this whatever you 
want, for whatever is appropriate for your application. The second parameter 
is used to list any dependencies you wish to use in this module. The empty 
array signifies that there are no dependencies in this case. 
Think of an Angular module as a namespace in C#. It is a wrapper, or 
container, for other things you create within the module. One thing you create 
within a module is a controller in which you define functions and variables to 
use from your HTML page. 

Create a Controller 
In a typical web page you either display data or get data from input fields. 
With Angular you typically use data binding to accomplish both of these tasks. 
To use data binding, you first must have some variable names as the source 
of your bindings. We create these variable names within a “controller” that 
you define in another JavaScript file. Angular uses the Model View Controller 
(MVC) design pattern. A controller is responsible for managing the data 
binding between the model (properties of the $scope variable) and the view 
(the HTML page). 
Right mouse click on the Scripts folder in your project and select Add | 
JavaScript File from the menu. Type in productController in the text box and 
click the OK button. In this new JavaScript file, add the following code. 



 Create a Controller 

Get Started with Angular 5 
Copyright © 2016 by PDSA, Inc. 
All rights reserved.  Reproduction is strictly prohibited. 

1  (function () { 
2    'use strict'; 
3   
4    angular.module('ptcApp') 
5      .controller('PTCController', PTCController); 
6   
7    function PTCController($scope) { 
8      var vm = $scope; 
9   
10     // Expose a 'product' object 
11     vm.product = { 
12      ProductName: 'Pluralsight Subscription' 
13     }; 
14   } 
15 })(); 

Line 1 starts an IIFE. On lines 4 and 5 you reference the module named 
‘ptcApp’ you created earlier. Chain the controller() function to declare your 
intention to use a controller with the name of ‘PTCController’. The second 
parameter to the controller function is a reference to a function callback 
named PTCController. Lines 7 through 14 is the PTCController function 
declaration that Angular calls when it needs to reference something from the 
HTML page.  
Angular passes to the controller function a parameter named $scope. The 
$scope variable is an object created by Angular to provide a mechanism to 
glue the directives you create on an HTML page with the variables defined 
within your controller. A good practice is to immediately assign $scope to your 
own variable name as you see on line 8. Many people use the variable name 
‘vm’ because we think of $scope as a View Model object. 
On lines 11 thru 13 you create a variable named ‘product’ that is an object 
literal with 1 property named ProductName. You assign a hard-coded value to 
this property. To display this property’s value in and input field on the HTML 
page, use an Angular directive called ‘ng-model’ (also written as ngModel). 
The value of this ng-model attribute is the name of the property defined on the 
$scope. 

<input type="text"  
       ng-model="product.ProductName"  
       class="form-control" /> 

The ng-model directive says to look at the current scope of the HTML page 
and attempt to locate the variable named ‘product’ within that scope. Then 
access the ProductName property to display its value within the input field. 
The question is, how does the ng-model directive know the scope it is 
contained within, and the controller to use? That is explained in the next 
section. 



Get Started with Angular 

6 Get Started with Angular 
Copyright © 2016 by PDSA, Inc. 

All rights reserved worldwide.  Reproduction is strictly prohibited.  

Define the Module and Controller for a 
Page 

So far, all you have done is to create an HTML page and a couple of 
JavaScript files. How do you hook them together? We need to use two more 
Angular directives; ng-app and ng-controller. The first step is to drag the two 
.js files onto your HTML page. Be sure to place them below the script tag for 
angular. 

<script src="Scripts/angular.min.js"></script> 
<script src="Scripts/app.js"></script> 
<script src="Scripts/productController.js"></script> 

Modify the <html> tag of your HTML page so it looks like the following: 

<html ng-app="ptcApp"> 

Make sure the ng-app (also written as ngApp) directive has the exact same 
name as what you defined in the app.js file. In this case that name is ‘ptcApp’. 
This directive instructs Angular that it should look for a module declared with 
the name of ‘ptcApp’ and assign the scope of that module around all of the 
DOM elements within the <html> tag. The second directive, ng-controller 
(also written as ngController), you place on the <body> tag of your HTML 
page. 

<body ng-controller="PTCController"> 

This directive gives scope to everything within the <body> tag on this HTML 
page to the controller function PTCController. You do not need to place this 
directive on the <body> tag. You may place this directive on a <div> tag 
around just one specific area of the page. In this way you could have different 
controllers for different parts of a page. 

Data Binding 
Now that you have the scope defined, you bind the ‘product’ variable defined 
in your controller function to one or more HTML elements. Open up your 
HTML page and modify the Product text box to look like the following: 



 Data Binding 

Get Started with Angular 7 
Copyright © 2016 by PDSA, Inc. 
All rights reserved.  Reproduction is strictly prohibited. 

<input type="text"  
       ng-model="product.ProductName"  
       class="form-control" /> 

When binding to <input> elements in HTML you use the ng-model directive. 
This directive enables two-way data binding. If you modify the value of the 
ProductName property in JavaScript code, the UI will be immediately updated 
with the new value. If the user modifies the input field with a new value, the 
ProductName property is updated immediately with the new value entered. 
To show this in action, let’s bind the <p> tag to the product.ProductName 
property. Since you are not dealing with an <input> element, use the data 
binding syntax of curly braces as shown below: 

<label for="ProductName">Product Name Entered</label> 
<p class="form-control-static">{{product.ProductName}}</p> 

Use this data binding syntax when you are simply displaying data on the 
HTML page. You typically see this kind of data binding when building an 
HTML table or a <select> list. 

Run the Page 
If you have followed along with this article, you can now run this HTML page. 
You should see something that looks similar to Figure 3. If you type into the 
input field, you will see the value in the <p> tag updated immediately. 

 
Figure 3: Data binding makes working with data a breeze. 



Get Started with Angular 

8 Get Started with Angular 
Copyright © 2016 by PDSA, Inc. 

All rights reserved worldwide.  Reproduction is strictly prohibited.  

Summary 
In this blog post you learned how to add Angular to an MVC project. You 
learned about modules, controllers and scope. You also created a variable on 
the scope variable and learned to bind that variable’s value to a couple of 
elements on the HTML page. These are the basics of using Angular. In the 
next series of blog posts, we will explore a lot of cool things you can do with 
this powerful framework. 

Sample Code 
You can download the code for this sample at www.pdsa.com/downloads. 
Choose the category “PDSA Blog”, then locate the sample PDSA Blog 
Sample: Get Started with Angular. 

http://www.pdsa.com/downloads

	Get Started with Angular
	Adding Angular to a Project
	Create a Test Page

	Create Angular Module
	Create a Controller
	Define the Module and Controller for a Page
	Data Binding
	Run the Page

	Summary
	Sample Code

