

Configuration Settings for Angular
Applications

Just like in .NET applications, you might want to have configuration settings in
your Angular applications that you can access from any component or service
class. There are many approaches you can take for global settings, however,
I am going to use a service that can be injected into any class. I think the
flexibility of using a service is an ideal method for providing application-wide
settings to any class that needs them. This blog post will describe the process
of creating this service.

An AppSettings Class
Create a class with properties to hold the values you wish to use in your
Angular application. If you have a Product form that the user will be using to
add new products to a database, you might want to provide some default
values when they are adding a new product. Below is a class that I named
AppSettings. This class has two properties; defaultUrl and defaultPrice.
These values will be set into a Product object in a product component class a
little later.

export class AppSettings {
 defaultUrl: string = "http://www.fairwaytech.com"
 defaultPrice: number = 1
}

To create this class, add a \shared folder under the \src\app folder and add a
new Typescript file named AppSettings.ts. Enter the code shown in the
snippet above.

Configuration Settings for Angular

2 Configuration Settings for Angular
Copyright © 2014 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

An AppSettingsService Class
It is now time to create a service class to return an instance of the
AppSettings class. Add a new Typescript file under the \shared folder named
AppSettingsService.ts. Add the code shown below.

import { Injectable } from '@angular/core';
import { Observable } from 'rxjs/Observable';
import 'rxjs/add/observable/of';

import { AppSettings } from "./appsettings";

@Injectable()
export class AppSettingsService {
 getSettings(): Observable<AppSettings> {
 let settings = new AppSettings();

 return Observable.of<AppSettings>(settings);
 }
}

This service class is fairly standard as far as service classes go. In the
getSettings() method you create a new instance of the AppSettings class and
return that object from this service. The main reason I create a service here is
to provide the flexibility to change the implementation of how I retrieve the
settings later. For example, I might choose to read the settings from a JSON
file, or I might even make a Web API call to get the settings. Any method that
calls this service will always make the same call regardless of where those
settings are stored. The calling methods don’t know if the implementation
changes, they still receive the same settings class.

Using the AppSettingsService Class
To retrieve the settings from this service class, import the AppSettings and
AppSettingsService classes in your component.

 Using the AppSettingsService Class

Configuration Settings for Angular 3
Copyright © 2014 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

import { AppSettings }
 from '../shared/appsettings';
import { AppSettingsService }
 from '../shared/appsettings.service';

Add the AppSettingsService to the constructor to tell Angular to inject the
service into this class. Create a private property in your class to hold the
settings retrieved from the getSettings() method. In the ngOnInit() method
make the call to the getSettings() method using the subscribe method. The
subscribe method has three parameters you can pass; a success function, an
error function, and a completed function. In the success function set the result
returned to the settings property. In this sample, I am ignoring the error. In the
completed function, I create a new instance of the Product object and assign
the price and url properties to the defaults returned in the settings object. The
Product object is bound to field on my detail page as shown in Figure 1.

export class ProductDetailComponent implements OnInit {
 constructor(
 private appSettingsService: AppSettingsService) {
 }

 product: Product;
 private settings: AppSettings;

 ngOnInit(): void {
 this.appSettingsService.getSettings()
 .subscribe(settings => this.settings = settings,
 () => null,
 () => {
 this.product = new Product();
 this.product.price = this.settings.defaultPrice;
 this.product.url = this.settings.defaultUrl;
 });
 }
}

Configuration Settings for Angular

4 Configuration Settings for Angular
Copyright © 2014 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 1: The Price and URL fields are filled in with defaults from the
AppSettings class.

Get Settings from a JSON File
Instead of hard-coding the settings values, let’s put those settings into a
JSON file. Create a folder called \assets under the \src\app folder. Add a
JSON file named appsettings.json. Add the following into this file.

{
 "defaultUrl": "http://angular.io",
 "defaultPrice": 2
}

Change the AppSettingsService class to read from this file. Import the Http
and Response classes from @angular/http. Import the ReactiveJS operators
map and catch, and the observable, throw. Modify the getSettings() method to
call the http.get() method, passing in the path to the JSON file you created. I
use a function named extractData() to extract the response returned from

 Summary

Configuration Settings for Angular 5
Copyright © 2014 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

calling the map() function. I also created a handleErrors() method to handle
any exceptions.

import { Injectable } from '@angular/core';
import { Http, Response } from '@angular/http';
import { Observable } from 'rxjs/Observable';
import 'rxjs/add/operator/map';
import 'rxjs/add/operator/catch';
import 'rxjs/add/observable/throw';

import { AppSettings } from "./appsettings";

@Injectable()
export class AppSettingsService {
 constructor(private http: Http) {
 }

 getSettings(): Observable<AppSettings> {
 return this.http.get("/src/app/assets/appsettings.json")
 .map(this.extractData)
 .catch(this.handleErrors);
 }

 private extractData(res: Response) {
 let body = res.json();
 return body || {};
 }

 private handleErrors(error: any): Observable<any> {
 console.error('An error occurred', error);

 return Observable.throw(error.message || error);
 }
}

If you don’t already have it, you need to import the HttpModule from
@angular/http in your app.module.ts file. Add the HttpModule to the imports
property in the @NgModule() decorator function.

Summary
In this blog post you learned an approach for handling application-wide
settings for Angular applications. A service approach is the most flexible
approach to providing settings to any other class in your application. You can
choose to store your settings in a class, in an external JSON file, or you can
even make a call to a Web API to retrieve the values. The consumers of your

Configuration Settings for Angular

6 Configuration Settings for Angular
Copyright © 2014 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

service don’t care where they values come from, nor do they have to change
the call to the service.
You can get the samples at www.pdsa.com/downloads. Choose “PDSA
Blogs” from the Category, then select “Configuration Settings for Angular
Applications”.

http://www.pdsa.com/downloads

	Configuration Settings for Angular Applications
	An AppSettings Class
	An AppSettingsService Class
	Using the AppSettingsService Class
	Get Settings from a JSON File
	Summary

