

Creating Collections
of Entity Objects
using Reflection

In my last blog posts I have been showing you how to create collection of
entity objects using code that is custom for each table and object you create.
Well, if you use a little reflection code you can shrink this code quite a bit.
Yes, we all know that reflection is slow and probably should be avoided in
most cases. What I have found out is that loading over 6200 product records
into an entity collection still takes less than a second when using Reflection.
So, I will leave it up to you to decide which way you wish to go.
We will once again use our Product class that uses nullable types as shown
below:

Creating Collections of Entity Objects using Reflection

2 Creating Collections of Entity Objects
Copyright © 2013 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

C#
public class Product
{
 public int? ProductId { get; set; }
 public string ProductName { get; set; }
 public DateTime? IntroductionDate { get; set; }
 public decimal? Cost { get; set; }
 public decimal? Price { get; set; }
 public bool? IsDiscontinued { get; set; }
}

Visual Basic
Public Class Product
 Public Property ProductId() AsNullable(Of Integer)
 Public Property ProductName() As String
 Public Property IntroductionDate() As Nullable(Of DateTime)
 Public Property Cost() As Nullable(Of Decimal)
 Public Property Price() As Nullable(Of Decimal)
 Public Property IsDiscontinued() As Nullable(Of Boolean)
End Class

How Reflection Works
If you wish to set one of the properties on the Product class to a certain value,
you write code like the following:

C#
Product entity = new Product();
entity.ProductName = "A New Product";

Visual Basic
Dim entity as New Product()
entity.ProductName = "A New Product"

Sometimes you might want to create a generic routine that you can pass a
property name to and the value to set that property to. This can be
accomplished using Reflection as shown in the following code:

 A Better Way to Set Property Values

Creating Collections of Entity Objects 3
Copyright © 2013 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

C#
Product entity = new Product();
typeof(Product).InvokeMember("ProductName",
 BindingFlags.SetProperty,
 Type.DefaultBinder, entity,
 new Object[] { "A New Product" });

Visual Basic
Dim entity as New Product()
GetType(Product).InvokeMember("ProductName", _
 BindingFlags.SetProperty, _
 Type.DefaultBinder, entity, _
 New Object() { "A New Product" })

The InvokeMember is a method of the System.Type class. Using typeof() in
C# or GetType() in Visual Basic returns an instance of the Type class which
contains meta-data about the Product class. You pass 5 parameters to the
InvokeMember method. The first parameter is the name of the property you
wish to set. The second parameter is the name of the property or method you
wish to invoke; in this case it is the Set property. The third parameter tells
InvokeMember that you are using the default binder. The fourth parameter is
the variable that contains a reference to an instance of the class specified by
the type (in this case the Product object). The last parameter is an object
array of whatever you need to pass to the method or property that you are
invoking. For setting the ProductName property you only need a single object
array of the string you are setting.

A Better Way to Set Property Values
While the InvokeMember method works for setting a property, it is actually
quite slow. There is a more efficient way to set a property using reflection.
There is a GetProperty method on the Type class you use to retrieve a
PropertyInfo object. This PropertyInfo object has a SetValue method that you
can use to set the value on that property. Below is an example of calling the
SetValue method.

Creating Collections of Entity Objects using Reflection

4 Creating Collections of Entity Objects
Copyright © 2013 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

C#
Product entity = new Product();

typeof(Product).GetProperty("ProductName").
 SetValue(entity, "A New Product", null);

MessageBox.Show(entity.ProductName);

Visual Basic
Dim entity As New Product()

GetType(Product).GetProperty("ProductName"). _
 SetValue(entity, "A New Product", Nothing)

MessageBox.Show(entity.ProductName)

The above code is actually a little easier to understand than using the
InvokeMember and is over 100% faster! That is a big difference and you
should take advantage of it!

Apply Reflection to Loading Collections
When you wish to load a collection of entity classes you will loop through
either a DataReader or a DataTable. Before you loop through, however, you
should gather a collection of all properties on your Product class into an array
of PropertyInfo objects. This way you only get the properties one time instead
of each time through the rows you get a single property using the GetProperty
method. In the code shown below you will use the GetProperties method to
retrieve this array.
You will then build the data reader and move through each row of the data
reader by using the Read method. For each row you will now loop through the
PropertyInfo array and use the property name to retrieve the corresponding
column in the data reader. Remember, this assumes that your column names
are the same name as your entity class.

 Apply Reflection to Loading Collections

Creating Collections of Entity Objects 5
Copyright © 2013 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

C#
public List<Product> GetProducts()
{
 SqlCommand cmd = null;
 List<Product> ret = new List<Product>();
 Product entity = null;

 // Get all the properties in Entity Class
 PropertyInfo[] props = typeof(Product).GetProperties();

 cmd = new SqlCommand("SELECT * FROM Product");
 using (cmd.Connection = new
 SqlConnection(AppSettings.Instance.ConnectString))
 {
 cmd.Connection.Open();
 using (var rdr = cmd.ExecuteReader())
 {
 while (rdr.Read())
 {
 // Create new instance of Product Class
 entity = new Product();

 // Set all properties from the column names
 // NOTE: This assumes your column names are the
 // same name as your class property names
 foreach (PropertyInfo col in props)
 {
 if (rdr[col.Name].Equals(DBNull.Value))
 col.SetValue(entity, null, null);
 else
 col.SetValue(entity, rdr[col.Name], null);
 }

 ret.Add(entity);
 }
 }
 }

 return ret;
}

Visual Basic
Public Function GetProducts() As List(Of Product)
 Dim cmd As SqlCommand = Nothing
 Dim ret As New List(Of Product)()
 Dim entity As Product = Nothing

 ' Get all the properties in Entity Class
 Dim props As PropertyInfo() = _
 GetType(Product).GetProperties()

 cmd = New SqlCommand("SELECT * FROM Product")
 Using cnn = New _
 SqlConnection(AppSettings.Instance.ConnectString)
 cmd.Connection = cnn

Creating Collections of Entity Objects using Reflection

6 Creating Collections of Entity Objects
Copyright © 2013 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

 cmd.Connection.Open()
 Using rdr = cmd.ExecuteReader()
 While rdr.Read()
 ' Create new instance of Product Class
 entity = New Product()

 ' Set all properties from the column names
 ' NOTE: This assumes your column names are the
 ' same name as your class property names
 For Each col As PropertyInfo In props
 If rdr(col.Name).Equals(DBNull.Value) Then
 col.SetValue(entity, Nothing, Nothing)
 Else
 col.SetValue(entity, rdr(col.Name), Nothing)
 End If
 Next

 ret.Add(entity)
 End While
 End Using
 End Using

 Return ret
End Function

Create Generic Base Class
Instead of writing all of the above code for each entity collection class you
need to load, you can create a base class with a generic method that will
build your collection for you. Create a class called ManagerBase to which you
will create a method called BuildCollection. This BuildCollection method will
allow you to specify the type of entity, symbolized by <T>, that you wish to
create a collection of. Pass into this method the type of the entity and a
SqlDataReader and this method will take care of the rest. With the entity Type
you pass in this method can retrieve the array of PropertyInfo objects from
that type. A loop is made through the data reader and a new instance of the
entity is created using the Activator class’ CreateInstance method. All the
properties in the array of PropertyInfo objects is looped through to gather the
data into the entity. Each entity is finally added to a generic List<T> collection.
When all records have been processed the generic list is returned.

 Create Generic Base Class

Creating Collections of Entity Objects 7
Copyright © 2013 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

C#
public class ManagerBase
{
 public List<T> BuildCollection<T>(Type typ,
 SqlDataReader rdr)
 {
 List<T> ret = new List<T>();
 T entity;

 // Get all the properties in Entity Class
 PropertyInfo[] props = typ.GetProperties();

 while (rdr.Read())
 {
 // Create new instance of Entity
 entity = Activator.CreateInstance<T>();

 // Set all properties from the column names
 // NOTE: This assumes your column names are the
 // same name as your class property names
 foreach (PropertyInfo col in props)
 {
 if (rdr[col.Name].Equals(DBNull.Value))
 col.SetValue(entity, null, null);
 else
 col.SetValue(entity, rdr[col.Name], null);
 }

 ret.Add(entity);
 }

 return ret;
 }
}

Visual Basic
Public Class ManagerBase
 Public Function BuildCollection(Of T)(typ As Type, _
 rdr As SqlDataReader) As List(Of T)
 Dim ret As New List(Of T)()
 Dim entity As T

 ' Get all the properties in Entity Class
 Dim props As PropertyInfo() = typ.GetProperties()

 While rdr.Read()
 ' Create new instance of Entity
 entity = Activator.CreateInstance(Of T)()

 ' Set all properties from the column names
 ' NOTE: This assumes your column names are the
 ' same name as your class property names
 For Each col As PropertyInfo In props
 If rdr(col.Name).Equals(DBNull.Value) Then
 col.SetValue(entity, Nothing, Nothing)

Creating Collections of Entity Objects using Reflection

8 Creating Collections of Entity Objects
Copyright © 2013 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

 Else
 col.SetValue(entity, rdr(col.Name), Nothing)
 End If
 Next

 ret.Add(entity)
 End While

 Return ret
 End Function
End Class

Use Base Class
To use this base class you will create your ProductManager class that inherits
from this ManagerBase class. You can rewrite the GetProducts method
shown above with the code shown below. You can see that this significantly
reduces the amount of code you need to write.

 Use Base Class

Creating Collections of Entity Objects 9
Copyright © 2013 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

C#
public class ProductManager : ManagerBase
{
 public List<Product> GetProducts()
 {
 SqlCommand cmd = null;
 List<Product> ret = null;

 cmd = new SqlCommand("SELECT * FROM Product");
 using (cmd.Connection = new
 SqlConnection(AppSettings.Instance.ConnectString))
 {
 cmd.Connection.Open();
 using (var rdr = cmd.ExecuteReader())
 {
 // Build Collection of Entity Objets using Reflection
 ret = BuildCollection<Product>(typeof(Product), rdr);
 }
 }

 return ret;
 }
}

Visual Basic
Public Class ProductManager
 Inherits ManagerBase

 Public Function GetProducts() As List(Of Product)
 Dim cmd As SqlCommand = Nothing
 Dim ret As List(Of Product) = Nothing

 cmd = New SqlCommand("SELECT * FROM Product")
 Using cnn = New _
 SqlConnection(AppSettings.Instance.ConnectString)
 cmd.Connection = cnn
 cmd.Connection.Open()
 Using rdr = cmd.ExecuteReader()

 ' Build Collection of Entity Objets using Reflection
 ret = BuildCollection(Of Product)(_
 GetType(Product), rdr)

 End Using
 End Using

 Return ret
 End Function
End Class

Creating Collections of Entity Objects using Reflection

10 Creating Collections of Entity Objects
Copyright © 2013 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Summary
In this blog post you learned how to use reflection to fill a collection of entity
objects. There are two different methods of setting properties using
Reflection. You should use the SetValue method instead of the
InvokeMember as it is more efficient. Creating a base class and using a
generic method will eliminate a lot of repetitive code.

NOTE: You can download the sample code for this article by visiting my
website at http://www.pdsa.com/downloads. Select “Tips & Tricks”, then
select “Creating Collections of Entities using Reflection” from the drop down
list.

	Creating Collections of Entity Objects using Reflection
	How Reflection Works
	A Better Way to Set Property Values
	Apply Reflection to Loading Collections
	Create Generic Base Class
	Use Base Class

