

Creating Collections
of Entity Objects

using LINQ
As discussed in my last two blog posts you have a variety of ways to create
collections of Entity classes. Using a DataSet or DataTable is a little slower
than using a DataReader, but in most cases the difference is in milliseconds
so in a real world app this difference would not be a killer. For instance, in my
sample data I was loading 6,261 records from the Product table discussed in
the last blog post and it took 45 milliseconds on average to load those records
into an entity collection using a DataTable. It took only 30 milliseconds on
average to load the same entity collection using a DataReader. The rendering
of that data would probably take longer than that, so you can choose which
one you wish to use.
Let’s now look at one advantage of using a DataTable. A lot of developers
today are used to using LINQ. After loading data into a DataTable you can
iterate using a foreach statement, or you can use LINQ to create a collection
of entity objects.
Below is a typical entity class that models a Product table in a database:

Creating Collections of Entity Objects using LINQ

2 Fundamentals of ADO.NET
Copyright © 2006-2013 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

C#
public class Product
{
 public int ProductId { get; set; }
 public string ProductName { get; set; }
 public DateTime IntroductionDate { get; set; }
 public decimal Cost { get; set; }
 public decimal Price { get; set; }
 public bool IsDiscontinued { get; set; }
}

Visual Basic
Public Class Product
 Public Property ProductId() Integer
 Public Property ProductName() As String
 Public Property IntroductionDate() As DateTime
 Public Property Cost() As Decimal
 Public Property Price() As Decimal
 Public Property IsDiscontinued() As Boolean
End Class

Reading Data into a Collection using
LINQ

Let’s now use a LINQ query to iterate over the collection of DataRow objects
within a DataTable. In the code below you can see the use of the
SqlDataAdapter to fill a DataTable. You now use the AsEnumerable() method
on the DataTable to turn the collection of DataRow objects into an
enumerable list that can be used in a LINQ statement. In the LINQ statement
as you create the new Product object you still use the same DataConvert
class to check for valid data and convert into a value that can be stored into
each property.

 Reading Data into a Collection using LINQ

Fundamentals of ADO.NET 3
Copyright © 2006-2013 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

C#
public List<Product> GetProducts()
{
 DataTable dt = new DataTable();
 SqlDataAdapter da = null;

 da = new SqlDataAdapter("SELECT * FROM Product",
 AppSettings.Instance.ConnectString);

 da.Fill(dt);

 var query =
 (from dr in dt.AsEnumerable()
 select new Product
 {
 ProductId = Convert.ToInt32(dr["ProductId"]),
 ProductName = dr["ProductName"].ToString(),
 IntroductionDate =
 DataConvert.ConvertTo<DateTime>(
 dr["IntroductionDate"], default(DateTime)),
 Cost = DataConvert.ConvertTo<decimal>(
 dr["Cost"], default(decimal)),
 Price = DataConvert.ConvertTo<decimal>(
 dr["Price"], default(decimal)),
 IsDiscontinued = DataConvert.ConvertTo<bool>(
 dr["IsDiscontinued"], default(bool))
 });

 return query.ToList();
}

Visual Basic
Public Function GetProducts() As List(Of Product)
 Dim dt As New DataTable()
 Dim da As SqlDataAdapter = Nothing

 da = New SqlDataAdapter("SELECT * FROM Product", _
 AppSettings.Instance.ConnectString)

 da.Fill(dt)

 Dim query = (From dr In dt.AsEnumerable() _
 Select New Product() With { _
 .ProductId = Convert.ToInt32(dr("ProductId")), _
 .ProductName = dr("ProductName").ToString(), _
 .IntroductionDate = DataConvert.ConvertTo(Of _
 DateTime)(dr("IntroductionDate"), DateTime.MinValue), _
 .Cost = DataConvert.ConvertTo(Of Decimal)(dr("Cost"), 0D), _
 .Price = DataConvert.ConvertTo(Of Decimal) _
 (dr("Price"), 0D), _
 .IsDiscontinued = DataConvert.ConvertTo(Of _
 Boolean)(dr("IsDiscontinued"), False) _
 })

 Return query.ToList()

Creating Collections of Entity Objects using LINQ

4 Fundamentals of ADO.NET
Copyright © 2006-2013 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

End Function

 Reading Data into a Collection using LINQ

Fundamentals of ADO.NET 5
Copyright © 2006-2013 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Summary
In this chapter you learned how to create an entity class and a collection of
entity classes using LINQ. When using a DataTable filled with data, LINQ
allows you to write less code to create a collection of entities compared to a
foreach loop.

	Creating Collections of Entity Objects using LINQ
	Reading Data into a Collection using LINQ

