
1

Creating a XAML Tile Control
One of the navigation mechanisms used in Windows 8 and Windows Phone
is a Tile. A tile is a large rectangle that can have words and pictures that a
user can click on. You can build your own version of a Tile in your WPF or
Silverlight applications using a User Control. With just a little bit of XAML and
a little bit of code-behind you can create a navigation system like that shown
in Figure 1.

2

Figure 1: Use a Tile for navigation. You can build a Tile User Control with just a
little bit of XAML and code.

The WPF application shown in Figure 1 uses a WrapPanel to display a series
of Tile objects. There are two styles defined in this Window to give us a large
tile and a small tile. These styles and the usage of the Tile will be shown later,
but first let’s look at how you can create this tile user control.

3

The User Control
In a WPF or Silverlight application you can create user controls which are a
composite of other controls grouped together as a single unit. This user
control can then be dragged and dropped onto a Window or User Control
from the Visual Studio Toolbox. To create a “Tile” you need a Border, Grid,
Image and a TextBlock control. Of course you will need to style these to get
the appearance you saw in Figure 1. You will also need to use a Visual State
Manager to highlight the tile the user is currently hovering over. The complete
XAML for the tile is shown below:

<Border x:Name="borMain"
 Style="{StaticResource pdsaTileBorderStyle}"
 MouseEnter="OnMouseEnter"
 MouseLeave="OnMouseLeave"
 MouseLeftButtonDown="OnMouseLeftButtonDown">
 <VisualStateManager.VisualStateGroups>
 <VisualStateGroup Name="MouseStates">
 <VisualState Name="MouseEnter">
 <Storyboard>
 <ColorAnimation
 To="{StaticResource
 pdsaTileBorderHighlightColor}"
 Duration="00:00:00"
 Storyboard.TargetName="borMain"
 Storyboard.TargetProperty="BorderBrush.Color" />
 </Storyboard>
 </VisualState>
 <VisualState Name="MouseLeave" />
 </VisualStateGroup>
 </VisualStateManager.VisualStateGroups>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="*" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Image Grid.Row="0"
 Name="imgMain"
 Style="{StaticResource pdsaTileImageStyle}"
 Source="{Binding TileImageUri}" />
 <TextBlock Grid.Row="1"
 Name="tbText"
 Style="{StaticResource
 pdsaTileTextBlockStyle}"
 Text="{Binding TileText}" />
 </Grid>
</Border>

The Border, the Image and TextBlock all have a style applied to them. A set
of default styles are contained in a resource dictionary that comes with the
user control. The user control and the resource dictionary are located in a

4

DLL named PDSA.WPF. You can override the default resource dictionary
with one of your own to create a different look and feel for your tiles. You only
need to keep the names of the styles the same.
The Visual State Manager has just a single ColorAnimation when the mouse
enters the Border. This ColorAnimation will change the border brush color to
the value specified in the style named pdsaTileBorderHighlightColor. The
Border will respond to the MouseEnter and MouseLeave events and call the
Visual State Manager to move to the states defined in the XAML as shown in
the code below:

private void OnMouseEnter(object sender, MouseEventArgs e)
{
 VisualStateManager.GoToState(this, "MouseEnter", true);
}

private void OnMouseLeave(object sender, MouseEventArgs e)
{
 VisualStateManager.GoToState(this, "MouseLeave", true);
}

Creating the Click Event
In addition to the MouseEnter and MouseLeave events, the user control must
also raise a Click event. The MouseLeftButtonDown event is defined on the
Border control. When this event procedure is fired an instance of a class
called PDSATileEventArgs is created and a Click event is raised. Here is the
code for the MouseLeftButtonDown event.

5

private void OnMouseLeftButtonDown(object sender,
 MouseButtonEventArgs e)
{
 PDSATileEventArgs args = new PDSATileEventArgs();

 args.Text = this.Text;
 args.ViewName = this.ViewName;
 if(ImageUri != null)
 args.ImageUri = this.ImageUri.ToString();
 if(ToolTip != null)
 args.ToolTip = this.ToolTip.ToString();

 RaiseClick(args);
}

public delegate void TileClickEventHandler(object sender,
 PDSATileEventArgs e);

public event TileClickEventHandler Click;

protected void RaiseClick(PDSATileEventArgs e)
{
 if (null != Click)
 Click(this, e);
}

As you can see in the MouseLeftButtonDown event you create a new
instance of a PDSATileEventArgs class. You gather the dependency
properties from the user control and place those into this new
PDSATileEventArgs object. Next, you call the RaiseClick method passing in
this object. The Click event is raised from this method passing in the current
tile object and the instance of the PDSATileEventArgs class. The
PDSTileEventArgs class is shown below:

6

public class PDSATileEventArgs : EventArgs
{
 public PDSATileEventArgs() : base()
 {
 ViewName = string.Empty;
 Text = string.Empty;
 ImageUri = string.Empty;
 ToolTip = string.Empty;
 }

 public string ViewName { get; set; }
 public string Text { get; set; }
 public string ImageUri { get; set; }
 public string ToolTip { get; set; }
}

Create a Tile in your Application
After you have built this user control you can add a reference to the DLL that
contains the user control. This user control will now show up in the Visual
Studio Toolbox. Drag and drop a Tile control onto a window and set the
appropriate properties via the Property Window or directly in the XAML.
Below is the XAML for the “Computer Cleaner” tile shown in the upper left
hand corner of Figure 1.

<my:PDSAucTile
 Name="tileComputerCleaner"
 Text="Computer Cleaner"
 ViewName="ComputerCleanerView"
 ToolTip="Click here to run the Computer Cleaner"
 ImageUri="/Images-Tiles/ComputerCleaner.png"
 Click="tile_Click"
 Style="{StaticResource tileLarge}" />

Responding to the Click Event
When you click on a tile a Click event will fire. This event has a normal event
procedure signature where you are passed the object that fired the event and
an event argument object. The event argument object is an instance of the
PDSATileEventArgs class. This event argument object contains the Text,
ViewName, ImageUri and the ToolTip properties that you set in the XAML. In
the sample code below these values are simply displayed in text blocks on
the main window.

7

private void tile_Click(object sender, PDSATileEventArgs e)
{
 tbText.Text = e.Text;
 tbViewName.Text = e.ViewName;
 tbImageUri.Text = e.ImageUri;
 tbToolTip.Text = e.ToolTip;
}

In your application you might use a switch statement on the ViewName
property to figure out which view to display as shown below:

private void tile_Click(object sender, PDSATileEventArgs e)
{
 switch (e.ViewName)
 {
 Case "ComputerCleanerView":
 // Display the Computer Cleaner View
 break;

 Case "LicenseView":
 // Display the License View
 break;

 ... etc.
 }
}

You should assign a unique ViewName to each tile on your window in order
to easily determine which tile was clicked upon and thus what action your
program needs to take.

8

Summary
A Windows Phone or Windows 8 tile is very easy to create in XAML. In this
blog post you learned how just a few lines of XAML and some event wire-ups
make short work of creating a list of Tile objects. In the sample that comes
with this blog post a WrapPanel is used to allow the tiles to be moved around
fairly easy. You could put a ScrollViewer control around the WrapPanel to
allow the set of Tiles to grow in any direction you wish.

NOTE: You can download the sample code for this article by visiting my
website at http://www.pdsa.com/downloads. Select “Tips & Tricks”, then
select “Creating a XAML Tile Control” from the drop down list.

http://www.pdsa.com/downloads

	Creating a XAML Tile Control
	The User Control
	Creating the Click Event
	Create a Tile in your Application
	Responding to the Click Event

