
1

A WPF Image/Text Button
Some of our customers are asking us to give them a Windows 8 look and feel
for their applications. This includes things like buttons, tiles, application bars,
and other features. In this blog post I will describe how to create a button that
looks similar to those you will find in a Windows 8 application bar.
In Figure 1 you can see two different kinds of buttons. In the top row is a WPF
button where the content of the button includes a Border, an Image and a
TextBlock. In the bottom row are four individual user controls that have a
Windows 8 style look and feel. The “Edit” button in Figure 1 has the mouse
hovering over it so you can see how it looks when the user is about to click on
it.

Figure 1: It is best to create a custom user control to get a more polished look and
feel for a button control.

If you read my previous blog post on creating a custom Button user control,
you will find this blog post very similar.
There are many ways to create custom buttons and there are advantages and
disadvantages to each way. The purpose of this blog post is to present one
method that is easily understood by almost any XAML programmer, and
hopefully to those new to XAML as well. User controls have been around
since the Visual Basic 4.0 days. Most developers understand the value of

2

using user controls. With XAML user controls you can put these controls into
a WPF User Control Library or a Silverlight Class Library and reference those
DLLs from any WPF or Silverlight application. This gives you great reusability.

The User Control
The XAML for this kind of Windows 8 application bar style-button is a little
more complicated than the simple buttons shown in my previous blog posts.
However, the basics are shown below:

<Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Border Grid.Row="0"
 Name="borMain"
 Style="{StaticResource
 pdsaButtonImageTextBorderStyle}"
 MouseEnter="borMain_MouseEnter"
 MouseLeave="borMain_MouseLeave"
 MouseLeftButtonDown="borMain_MouseLeftButtonDown"
 ToolTip="{Binding Path=ToolTip}">

 <VisualStateManager.VisualStateGroups>
 ... MORE XAML HERE ...
 </VisualStateManager.VisualStateGroups>

 <Image Source="{Binding Path=ImageUri}"
 Style="{StaticResource
 pdsaButtonImageTextImageStyle}" />
 </Border>
 <TextBlock Grid.Row="1"
 Name="tbText"
 Style="{StaticResource
 pdsaButtonImageTextTextBlockStyle}"
 Text="{Binding Path=Text}" />
</Grid>

There is a Grid, a Border, an Image and a TextBlock control all combined to
form the buttons shown in row 2 of Figure 1. The above XAML is fairly easy to
understand as this is just combining standard controls into a format that gives
you the look required for your button. The Border, the Image and the
TextBlock have a named style applied to them. The definition for this user
control is in a DLL named PDSA.WPF. A default resource dictionary is
included in the DLL where this user control is located to give you a default

3

look and feel; however, you can make a copy of this resource dictionary and
change the look to meet your needs.

Adding the Visual State Manager
In the original blog post on creating a button user control I wrote code to
change a button’s state using C#. In this blog post I have replaced most of
this code with XAML in the form of the Visual State Manager. A Visual State
Manager (VSM) is a container for a storyboard in which you specify a series
of actions to perform on different attributes of your controls. To give the user
feedback when they hover over a button you use the Visual State Manager to
change attributes of controls.
In the following VSM there are two visual states; MouseEnter and
MouseLeave. The MouseLeave is empty which tells the VSM to return all
properties changed during the MouseEnter back to their original values. In the
MouseEnter state is where you modify three properties of the Border control.
First you modify the BorderBrush color to the color specified in the style
named “pdsaButtonImageTextBorderHoverColor”. You also modify the
Background color of the border to the color specified in the style name
“pdsaButtonImageTextBackHoverColor”. Finally, the Margin property of the
Border control is modified slightly in order to make the button appear to move
up.

4

<VisualStateManager.VisualStateGroups>
 <VisualStateGroup Name="MouseStates">
 <VisualState Name="MouseEnter">
 <Storyboard>
 <ColorAnimation
 To="{StaticResource
 pdsaButtonImageTextBorderHoverColor}"
 Duration="0:0:00.1"
 Storyboard.TargetName="borMain"
 Storyboard.TargetProperty="BorderBrush.Color" />
 <ColorAnimation
 To="{StaticResource
 pdsaButtonImageTextBackHoverColor}"
 Duration="0:0:00.1"
 Storyboard.TargetName="borMain"
 Storyboard.TargetProperty="Background.Color" />
 <ThicknessAnimation
 To="{StaticResource
 pdsaButtonImageTextHoverThickness}"
 Duration="0:0:00.1"
 Storyboard.TargetName="borMain"
 Storyboard.TargetProperty="Margin" />
 </Storyboard>
 </VisualState>
 <VisualState Name="MouseLeave" />
 </VisualStateGroup>
</VisualStateManager.VisualStateGroups>

The XAML below shows the default styles used in the Visual State Manager.
These styles come from the PDSAButtonStyles.xaml resource dictionary
contained in the PDSA.WPF dll.

5

<!-- Border color while hovering over button -->
<Color x:Key="pdsaButtonImageTextBorderHoverColor">
 Gray
</Color>
<!-- Background color while hovering over button -->
<Color x:Key="pdsaButtonImageTextBackHoverColor">
 Gray
</Color>
<!-- Thickness while hovering over button -->
<Thickness x:Key="pdsaButtonImageTextHoverThickness">
 4,2,4,4
</Thickness>

Writing the Mouse Events
To trigger the Visual State Manager to run its storyboard in response to the
specified event, you respond to the MouseEnter event on the Border control.
In the code behind for this event call the GoToElementState() method of the
VisualStateManager class exposed by the user control. To this method you
will pass in the target element (“borMain”) and the state (“MouseEnter”). The
VisualStateManager will then run the storyboard contained within the defined
state in the XAML.

private void borMain_MouseEnter(object sender,
 MouseEventArgs e)
{
 VisualStateManager.GoToElementState(borMain,
 "MouseEnter", true);
}

Write code in the MouseLeave event and call the VisualStateManager’s
GoToElementState method and specify “MouseLeave” as the state to go to.

6

private void borMain_MouseLeave(object sender,
 MouseEventArgs e)
{
 VisualStateManager.GoToElementState(borMain,
 "MouseLeave", true);
}

The Default Resource Dictionary
Below is the definition of the resource dictionary file contained in the
PDSA.WPF DLL. This dictionary is used as the default look and feel for any
Image/Text Button control you add to a window or user control.

7

<ResourceDictionary ...>
 <!-- ****************************** -->
 <!-- ** Image/Text Button Styles ** -->
 <!-- ****************************** -->
 <!-- Image/Text Button Border -->
 <Style TargetType="Border"
 x:Key="pdsaButtonImageTextBorderStyle">
 <Setter Property="Margin"
 Value="4" />
 <Setter Property="BorderBrush"
 Value="White" />
 <Setter Property="BorderThickness"
 Value="2" />
 <Setter Property="HorizontalAlignment"
 Value="Center" />
 <Setter Property="CornerRadius"
 Value="50" />
 <Setter Property="Width"
 Value="32" />
 <Setter Property="Height"
 Value="32" />
 <Setter Property="Background"
 Value="Transparent" />
 </Style>
 <!-- Image/Text Button Image -->
 <Style TargetType="Image"
 x:Key="pdsaButtonImageTextImageStyle">
 <Setter Property="Margin"
 Value="0" />
 </Style>
 <!-- Image/Text Button TextBlock -->
 <Style TargetType="TextBlock"
 x:Key="pdsaButtonImageTextTextBlockStyle">
 <Setter Property="Margin"
 Value="2" />
 <Setter Property="Foreground"
 Value="White" />
 <Setter Property="HorizontalAlignment"
 Value="Center" />
 <Setter Property="FontSize"
 Value="9" />
 </Style>
 <!-- Border color while hovering over button -->
 <Color x:Key="pdsaButtonImageTextBorderHoverColor">
 Gray
 </Color>
 <!-- Background color while hovering over button -->
 <Color x:Key="pdsaButtonImageTextBackHoverColor">
 Gray
 </Color>
 <!-- Thickness while hovering over button -->
 <Thickness x:Key="pdsaButtonImageTextHoverThickness">
 4,2,4,4
 </Thickness>
</ResourceDictionary>

8

Feel free to modify this resource dictionary, or copy it and modify your new
copy in order to give another look and feel to these buttons. Keep the “x:Key”
name the same, other than that, you can modify any other attribute.

Using the Button Control
Once you make a reference to the PDSA.WPF DLL from your WPF
application you will see the “PDSAucButtonImageText” control appear in your
Toolbox. Drag and drop the button onto a Window or User Control in your
application. I have not referenced the PDSAButtonStyles.xaml file within the
control itself so add a reference to this resource dictionary in your Application
Resources section defined in App.xaml.

<Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary
 Source="/PDSA.WPF;component/PDSAButtonStyles.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
</Application.Resources>

Your buttons now have a default look and feel unless you override the
application resource dictionary on a specific Window/User Control or on an
individual button. After you have given a global style to your application and
you drag your image/text button onto a window, the following will appear in
your XAML window.

<my:PDSAucButtonImageText ... />

There will be some other attributes set on the above XAML, but you just need
to set the x:Name, the Text, ToolTip and ImageUri properties. You will also
want to respond to the Click event procedure in order to associate an action
with clicking on this button. In the sample code you download for this blog
post you will find the declaration of the Edit button to be the following:

9

<my:PDSAucButtonImageText
 Name="btnEdit"
 ImageUri="/PDSA.WPF;component/Images/Edit_White.png"
 Text="Edit"
 Click="btnEdit_Click" />

The Text and ImageUri properties are dependency properties in the
PDSAucButtonImageText user control. The x:Name and the ToolTip we get
for free. Since a Border control does not have a Click event you will create
one by using the MouseLeftButtonDown on the border to fire your custom
“Click” event. Code the “Click” event in the PDSAucButtonImageText user
control using the code shown below:

private void borMain_MouseLeftButtonDown(object sender,
 MouseButtonEventArgs e)
{
 RaiseClick(e);
}

public delegate void ClickEventHandler(object sender,
 RoutedEventArgs e);
public event ClickEventHandler Click;

protected void RaiseClick(RoutedEventArgs e)
{
 if (null != Click)
 Click(this, e);
}

10

Summary
This blog post built upon the previous posts where I explained how to build a
button user control. The user control presented in this post adds both text and
an image and adds a little XAML to the storyboard in the Visual State
Manager. With the appropriate styles applied you can get a Windows 8 look
and feel for these application bar buttons. Feel free to modify the styles to
take on any look you want for your buttons.

NOTE: You can download the sample code for this article by visiting my
website at http://www.pdsa.com/downloads. Select “Tips & Tricks”, then
select “A WPF Image/Text Button” from the drop down list.

http://www.pdsa.com/downloads

	A WPF Image/Text Button
	The User Control
	Adding the Visual State Manager
	Writing the Mouse Events
	The Default Resource Dictionary
	Using the Button Control

