
1

Create your own WPF Button User
Controls

In Figure 1 you can see examples of the standard WPF Button controls. You
can add a drop shadow and you can change the color, but you can’t change
much else without creating a whole new control template. For example, you
are unable to modify the BorderBrush or the BorderThickness properties of
the Button control. Additionally you might want to use some other animation
than the default, which again requires you to change the control template.
Sometimes all you want to do is to just have some simple buttons where you
can modify the border brush and the thickness and have different color
options via styles. I have found that instead of working with the whole control
template thing, just creating a User Control is sometimes much easier.

Figure 1: The normal WPF Buttons cannot be styled very well.

There are many ways to create custom buttons and there are advantages and
disadvantages to each way. The purpose of this blog post is to present one
method that is easily understood by almost any XAML programmer, and
hopefully to those new to XAML as well. User controls have been around

2

since the Visual Basic 4.0 days. Most developers understand the value of
using user controls. With XAML user controls you can put these controls into
a WPF User Control Library or a Silverlight Class Library and reference those
DLLs from any WPF or Silverlight application. This gives you great reusability.
By using resource dictionaries and appropriate use of styles you can make
your user controls very customizable as shown in Figure 1. The 2nd row of
buttons you see are the same button user control with just different styles
applied.

The User Control
The XAML for your Button user control is actually very simple. You use a
single Border control and a TextBlock control within that Border as shown in
Listing 1.

<Border Name="hoverBorder"
 Style="{DynamicResource hoverBorder}"
 MouseDown="hoverBorder_MouseDown"
 MouseUp="hoverBorder_MouseUp"
 MouseEnter="hoverBorder_MouseEnter"
 MouseLeave="hoverBorder_MouseLeave"
 MouseLeftButtonUp="hoverBorder_MouseLeftButtonUp">
 <TextBlock Text="{Binding Path=Text}"
 Name="tbText"
 Style="{DynamicResource hoverTextBlock}" />
</Border>

Listing 1: The XAML for a Button user control is just a Border and TextBlock

The definition for this user control is in a DLL named PDSA.WPF. Notice that
there are Style definitions for both the Border and the TextBlock. We used
styles contained in a resource dictionary as opposed to setting up
dependency properties for each individual attribute that we might want to set.
This allows us to create a few different resource dictionaries, each with a
different theme for the buttons. You can see the three different themes we
created in Figure 1. The Gray Style button uses a resource dictionary that is
contained in the PDSA.WPF DLL. The other two styles are in the main project
and can be referenced from your App.xaml or from within the Window/User
Control where you need the button.

3

Changing Colors in Response to Mouse
Events

When a user moves over a button or presses a button you should give some
visual feedback to that user. You can do this with animation using the Visual
State Manager or Event Triggers in WPF. To keep things simple for this blog
post, I simply respond to the various mouse events and change the
Background property to a different color. When the mouse is pressed, I also
change the Foreground color of the Text in the TextBlock control. The code
for each of the mouse events is shown below.

4

private void pdsaButtonBorderStyle_MouseEnter(
 object sender, MouseEventArgs e)
{
 pdsaButtonBorderStyle.Background =
 (Brush)this.FindResource("pdsaButtonOverStyle");
}

private void pdsaButtonBorderStyle_MouseLeave(
 object sender, MouseEventArgs e)
{
 pdsaButtonBorderStyle.Background =
 (Brush)this.FindResource("pdsaButtonNormalStyle");
}

private void pdsaButtonBorderStyle_MouseDown(
 object sender, MouseButtonEventArgs e)
{
 // Save old Foreground Brush
 _TextBrush = tbText.Foreground;

 pdsaButtonBorderStyle.Background =
 (Brush)this.FindResource("pdsaButtonPressedStyle");
 tbText.Foreground =
 (SolidColorBrush)this.FindResource(
 "pdsaButtonTextBlockStylePressed");
}

private void pdsaButtonBorderStyle_MouseUp(
 object sender, MouseButtonEventArgs e)
{
 RestoreNormal();
}

private void RestoreNormal()
{
 pdsaButtonBorderStyle.Background =
 (Brush)this.FindResource("pdsaButtonNormalStyle");

 tbText.Foreground = _TextBrush;
}

Notice that in the code above that you use the FindResource() method
instead of accessing the this.Resources[] collection. That is because you
want to be able to set the resource dictionary at any level, not just on this user
control. FindResource() will search upward through your UI tree looking for a
resource that match the names you see that start with “pdsa”.
You will need a Click event that you can raise when the user clicks on the
button. Here is the definition for that Click event.

5

private void pdsaButtonBorderStyle_MouseLeftButtonUp(
 object sender, MouseButtonEventArgs e)
{
 RaiseClick(e);
}

public delegate void ClickEventHandler(object sender,
 RoutedEventArgs e);

public event ClickEventHandler Click;

protected void RaiseClick(RoutedEventArgs e)
{
 if (null != Click)
 Click(this, e);

 RestoreNormal();
}

The Default Resource Dictionary
Below is the definition of the resource dictionary file contained in the
PDSA.WPF DLL. This dictionary can be used as the default look and feel for
any button control you add to a window. I have included two additional
resource dictionaries in the main project as examples of how you can change
the resources to give your buttons a different look. You need to keep the
x:Key names the same, but you can change any of the attributes of color or
thickness that you want. You can even change from Gradient colors to a
SolidColorBrush as you can see I did when you look at the different resource
dictionaries.

6

<ResourceDictionary xmlns="http://schemas.microsoft.com/
 winfx/2006/xaml/presentation"
 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
 <!-- Hover TextBlock Style -->
 <Style TargetType="TextBlock"
 x:Key="pdsaButtonTextBlockStyle">
 <Setter Property="Foreground"
 Value="GhostWhite" />
 <Setter Property="Margin"
 Value="10" />
 <Setter Property="FontSize"
 Value="14" />
 </Style>
 <!-- Hover Brush for Pressed Hover Button Text Block -->
 <SolidColorBrush x:Key="pdsaButtonTextBlockStylePressed"
 Color="Black" />
 <!-- Hover Border Thickness -->
 <Thickness x:Key="pdsaButtonBorderStyleThickness"
 Bottom="0"
 Left="0"
 Right="0"
 Top="0" />
 <!-- Hover Border Brush -->
 <SolidColorBrush x:Key="pdsaButtonBorderBrushStyle"
 Color="Black" />
 <!-- Style for when hovering over button -->
 <RadialGradientBrush x:Key="pdsaButtonOverStyle">
 <GradientStop Color="#FF5F5F5F"
 Offset="0" />
 <GradientStop Color="#FFADADAD"
 Offset="1" />
 </RadialGradientBrush>
 <!-- Style for when button is pressed -->
 <LinearGradientBrush EndPoint="1,0.5"
 StartPoint="0,0.5"
 x:Key="pdsaButtonPressedStyle">
 <GradientStop Color="#FF5F5F5F"
 Offset="0" />
 <GradientStop Color="#FFADADAD"
 Offset="1" />
 </LinearGradientBrush>
 <!-- Style for normal button -->
 <LinearGradientBrush EndPoint="0.5,1"
 StartPoint="0.5,0"
 x:Key="pdsaButtonNormalStyle">
 <GradientStop Color="#FF5F5F5F"
 Offset="0" />
 <GradientStop Color="#FFADADAD"
 Offset="1" />
 </LinearGradientBrush>
 <!-- Overall Style for Hover Button -->
 <Style TargetType="Border"
 x:Key="pdsaButtonBorderStyle">
 <Setter Property="Margin"
 Value="6" />
 <Setter Property="CornerRadius"

7

 Value="5" />
 <Setter Property="Background"
 Value="{StaticResource pdsaButtonNormalStyle}" />
 <Setter Property="BorderBrush"
 Value="{StaticResource
 pdsaButtonBorderBrushStyle}" />
 <Setter Property="BorderThickness"
 Value="{StaticResource
 pdsaButtonBorderStyleThickness}" />
 </Style>
</ResourceDictionary>

You can look at the other two Resource Dictionary files when you download
the sample.

Using the Button Control
Once you make a reference to the PDSA.WPF DLL from your WPF
application you will see the “PDSAucButton” control appear in your Toolbox.
Drag and drop the button onto a Window or User Control in your application. I
have not referenced the PDSAButtonStyles.xaml file within the control itself
so you do need to add a reference to this resource dictionary somewhere in
your application such as in the App.xaml.

<Application.Resources>
 <ResourceDictionary>
 <ResourceDictionary.MergedDictionaries>
 <ResourceDictionary
 Source="/PDSA.WPF;component/PDSAButtonStyles.xaml" />
 </ResourceDictionary.MergedDictionaries>
 </ResourceDictionary>
</Application.Resources>

This will give your buttons a default look and feel unless you override that
dictionary on a specific Window/User Control or on an individual button. The
“Gray Style” button shown in Figure 1 is what the default button looks like
after setting the above code in your App.xaml and then dragging a button
onto a Window.
If you wish to give a specific style to just a single button you can override the
default by using the code below:

8

<my:PDSAucButton HorizontalAlignment="Left"
 Margin="6"
 Text="Flat Blue Style"
 x:Name="btn2"
 Click="btn2_Click"
 VerticalAlignment="Top">
 <my:PDSAucButton.Resources>
 <ResourceDictionary Source="FlatBlueButtonStyles.xaml" />
 </my:PDSAucButton.Resources>
</my:PDSAucButton>

If you want to override a series of buttons within one specific StackPanel, or
within a specific Window or User Control, you simply set the Resources
section for that control as shown below:

<StackPanel Orientation="Horizontal"
 VerticalAlignment="Top">
 <!-- Set Styles for All Buttons.
 This overrides the App.xaml styles -->
 <StackPanel.Resources>
 <ResourceDictionary Source="FlatBlueButtonStyles.xaml" />
 </StackPanel.Resources>
 <my:PDSAucButton HorizontalAlignment="Left"
 Margin="6"
 Text="Blue Style"
 x:Name="btn11"
 Effect="{StaticResource mainDropShadow}"
 VerticalAlignment="Top" />
 <!-- Can assign a custom set of styles -->
 <my:PDSAucButton HorizontalAlignment="Left"
 Margin="6"
 Text="Flat Blue Style"
 x:Name="btn12"
 VerticalAlignment="Top" />
</StackPanel>

In the above sample, all buttons within this StackPanel control are styled
using the resource dictionary FlatBlueButtonStyles.xaml.

9

Summary
Creating your own button control can be done in a variety of ways. You can
create a new Button control template, apply styles to change just a few things
about a Button, create your own Custom control that inherits from Button, or
build a User Control as in this blog post. Which method you choose depends
a little on how comfortable you are with each method, and how much control
you want over the final details of your new Button. The approach outlined in
this blog post is simple and easy to understand and almost anyone can use
this technique right away. Feel free to add your own animation to this control
or maybe add dependency properties to control the BorderBrush,
BorderThickness or any other properties you want.

NOTE: You can download the sample code for this article by visiting my
website at http://www.pdsa.com/downloads. Select “Tips & Tricks”, then
select “Create your own WPF Buttons” from the drop down list.

http://www.pdsa.com/downloads

	Create your own WPF Button User Controls
	The User Control
	Changing Colors in Response to Mouse Events
	The Default Resource Dictionary
	Using the Button Control

