
Read XML Files using
LINQ to XML and

Extension Methods
In previous blog posts I have discussed how to use XML files to store data in your
applications. I showed you how to read those XML files from your project and get
XML from a WCF service. One of the problems with reading XML files is when
elements or attributes are missing. If you try to read that missing data, then a null
value is returned. This can cause a problem if you are trying to load that data into
an object and a null is read. This blog post will show you how to create extension
methods to detect null values and return valid values to load into your object.

The XML Data
An XML data file called Product.xml is located in the \Xml folder of the Silverlight
sample project for this blog post. This XML file contains several rows of product
data that will be used in each of the samples for this post. Each row has 4
attributes; namely ProductId, ProductName, IntroductionDate and Price.

Read XML Files using LINQ to XML and Extension Methods

2 Read XML Files using LINQ to XML and Extension Methods
Copyright © 2012 by PDSA, Inc.

All rights reserved. Reproduction is strictly prohibited.

<Products>
 <Product ProductId="1"
 ProductName="Haystack Code Generator for .NET"
 IntroductionDate="07/01/2010" Price="799" />
 <Product ProductId="2"
 ProductName="ASP.Net Jumpstart Samples"
 IntroductionDate="05/24/2005" Price="0" />
 ...
 ...
</Products>

The Product Class
Just as you create an Entity class to map each column in a table to a property in a
class, you should do the same for an XML file too. In this case you will create a
Product class with properties for each of the attributes in each element of product
data. The following code listing shows the Product class.

 The Product Class

Read XML Files using LINQ to XML and Extension Methods 3
Copyright © 2012 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

public class Product : CommonBase
{
 public const string XmlFile = @"Xml/Product.xml";

 private string _ProductName;
 private int _ProductId;
 private DateTime _IntroductionDate;
 private decimal _Price;

 public string ProductName
 {
 get { return _ProductName; }
 set {
 if (_ProductName != value) {
 _ProductName = value;
 RaisePropertyChanged("ProductName");
 }
 }
 }

 public int ProductId
 {
 get { return _ProductId; }
 set {
 if (_ProductId != value) {
 _ProductId = value;
 RaisePropertyChanged("ProductId");
 }
 }
 }

 public DateTime IntroductionDate
 {
 get { return _IntroductionDate; }
 set {
 if (_IntroductionDate != value) {
 _IntroductionDate = value;
 RaisePropertyChanged("IntroductionDate");
 }
 }
 }

 public decimal Price
 {
 get { return _Price; }
 set {
 if (_Price != value) {
 _Price = value;
 RaisePropertyChanged("Price");
 }
 }
 }
}

NOTE: The CommonBase class that the Product class inherits from simply
implements the INotifyPropertyChanged event in order to inform your XAML UI of

Read XML Files using LINQ to XML and Extension Methods

4 Read XML Files using LINQ to XML and Extension Methods
Copyright © 2012 by PDSA, Inc.

All rights reserved. Reproduction is strictly prohibited.

any property changes. You can see this class in the sample you download for this
blog post.

Reading Data
When using LINQ to XML you call the Load method of the XElement class to load
the XML file. Once the XML file has been loaded, you write a LINQ query to iterate
over the “Product” Descendants in the XML file. The “select” portion of the LINQ
query creates a new Product object for each row in the XML file. You retrieve each
attribute by passing each attribute name to the Attribute() method and retrieving the
data from the “Value” property. The Value property will return a null if there is no
data, or will return the string value of the attribute. The Convert class is used to
convert the value retrieved into the appropriate data type required by the Product
class.

private void LoadProducts()
{
 XElement xElem = null;

 try
 {
 xElem = XElement.Load(Product.XmlFile);

 // The following will NOT work if you have missing attributes
 var products =
 from elem in xElem.Descendants("Product")
 orderby elem.Attribute("ProductName").Value
 select new Product
 {
 ProductId = Convert.ToInt32(
 elem.Attribute("ProductId").Value),
 ProductName = Convert.ToString(
 elem.Attribute("ProductName").Value),
 IntroductionDate = Convert.ToDateTime(
 elem.Attribute("IntroductionDate").Value),
 Price = Convert.ToDecimal(elem.Attribute("Price").Value)
 };

 lstData.DataContext = products;
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

This is where the problem comes in. If you have any missing attributes in any of the
rows in the XML file, or if the data in the ProductId or IntroductionDate is not of the

 Using Extension Methods

Read XML Files using LINQ to XML and Extension Methods 5
Copyright © 2012 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

appropriate type, then this code will fail! The reason? There is no built-in check to
ensure that the correct type of data is contained in the XML file. This is where
extension methods can come in real handy.

Using Extension Methods
Instead of using the Convert class to perform type conversions as you just saw,
create a set of extension methods attached to the XAttribute class. These
extension methods will perform null-checking and ensure that a valid value is
passed back instead of an exception being thrown if there is invalid data in your
XML file.

private void LoadProducts()
{
 var xElem = XElement.Load(Product.XmlFile);

 var products =
 from elem in xElem.Descendants("Product")
 orderby elem.Attribute("ProductName").Value
 select new Product
 {
 ProductId = elem.Attribute("ProductId").GetAsInteger(),
 ProductName = elem.Attribute("ProductName").GetAsString(),
 IntroductionDate =
 elem.Attribute("IntroductionDate").GetAsDateTime(),
 Price = elem.Attribute("Price").GetAsDecimal()
 };

 lstData.DataContext = products;
}

Extension Methods
To create an extension method you will create a class with any name you like. The
code below shows a class named XmlExtensionMethods. This listing just shows a
couple of the available methods such as GetAsString and GetAsInteger. These
methods are just like any other method you would write except when you pass in
the parameter you prefix the type with the keyword “this”. This lets the compiler
know that it should add this method to the class specified in the parameter.

Read XML Files using LINQ to XML and Extension Methods

6 Read XML Files using LINQ to XML and Extension Methods
Copyright © 2012 by PDSA, Inc.

All rights reserved. Reproduction is strictly prohibited.

public static class XmlExtensionMethods
{
 public static string GetAsString(this XAttribute attr)
 {
 string ret = string.Empty;

 if (attr != null && !string.IsNullOrEmpty(attr.Value))
 {
 ret = attr.Value;
 }

 return ret;
 }

 public static int GetAsInteger(this XAttribute attr)
 {
 int ret = 0;
 int value = 0;

 if (attr != null && !string.IsNullOrEmpty(attr.Value))
 {
 if(int.TryParse(attr.Value, out value))
 ret = value;
 }

 return ret;
 }

 ...
 ...
}

Each of the methods in the XmlExtensionMethods class should inspect the
XAttribute to ensure it is not null and that the value in the attribute is not null. If the
value is null, then a default value will be returned such as an empty string or a 0 for
a numeric value.

 Extension Methods

Read XML Files using LINQ to XML and Extension Methods 7
Copyright © 2012 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Summary
Extension methods are a great way to simplify your code and provide protection to
ensure problems do not occur when reading data. You will probably want to create
more extension methods to handle XElement objects as well for when you use
element-based XML. Feel free to extend these extension methods to accept a
parameter which would be the default value if a null value is detected, or any other
parameters you wish.

NOTE: You can download the complete sample code at my website.
http://www.pdsa.com/downloads. Choose “Tips & Tricks”, then "Read XML Files
using LINQ to XML and Extension Methods" from the drop-down.

Good Luck with your Coding,
Paul D. Sheriff

	Read XML Files using LINQ to XML and Extension Methods
	The XML Data
	The Product Class
	Reading Data
	Using Extension Methods
	Extension Methods

