
1

Client-Side Logging in Silverlight
Many of us have implemented logging in our ASP.NET, Windows Forms and
WPF applications, so why shouldn’t you do the same in your Silverlight
applications? Well, you should. In this blog post I will show you one approach
on how you might perform this logging. The class I will use is called
PDSALoggingManager. This class has a method named Log() you use to
publish data into a log file in your Silverlight application. A method named
LogException() is also available for logging information about any exceptions
that happen on the client-side of your Silverlight application. Let’s take a look
at the usage of the PDSALoggingManager class.

Logging Data
The simplest way to log information using the PDSALoggingManager class is
to call the Log() method with some string data as shown below:

PDSALoggingManager.Instance.Log("Some data to log");

This will add the string passed to the Log() method to an internal StringBuilder
object that contains the log information followed by a NewLine character. The
Log() method also writes the string to a file located in isolated storage. What
is written for each piece of data passed to the Log() method is shown here:

'Informational' log entry written on 5/22/2012 5:51:48 AM,
from class: 'SL_Log.MainPage'
 Some Data To Log

If you set the LogSystemInfo property on the PDSALoggingManager class
prior to calling Log(), then system information is written to the log at the same
time as the log data. Below is a sample of the log data with the system
information appended to the end.

2

'Informational' log entry written on 5/22/2012 5:51:48 AM,
from class: 'SL_Log.MainPage'
 Some Data To Log
System Information
 DateTime=5/22/2012 5:51:48 AM
 Current URL=file:///D:/MyStuff/BlogEntries/2012/
 Samples/SL-Log/SL-Log/Bin/Debug/SL_LogTestPage.html
 OSVersion=Microsoft Windows NT 6.1.7601 Service Pack 1
 OSName=Windows 7
 CurrentAssemblyName=PDSA.Silverlight, Version=5.0.0.0,
 Culture=neutral, PublicKeyToken=null
 MainAssemblyName=SL-Log, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=null
 AppDomainName=Silverlight AppDomain
 UserLanguage=en-US
 CompanyName=PDSA, Inc.
 ProductName=Silverlight Logging
 Description=Silverlight Logging
 Title=Silverlight Logging
 Copyright=Copyright © 2012 by PDSA, Inc.
 ApplicationVersion=1.0.0.0
 Stack Trace={LogInfoSample,btnLogInfo_Click}

The system information added to the end of the log comes from another class
called PDSASystemInfo. Note that I blogged about this class earlier, so check
out my previous blog entry at
http://weblogs.asp.net/psheriff/archive/2012/05/20/retrieve-system-
information-in-silverlight.aspx for information on this class and how that data
was gathered.

Passing Extra Data to Log
You have an additional overload on the Log() method that takes a generic
Dictionary<string, string> object you load with key/value pairs of data. Call
this version of Log() like the following:

Dictionary<string, string> extra =
 new Dictionary<string, string>();

extra.Add("CustomerId", "1");
extra.Add("StateCode", "CA");

PDSALoggingManager.Instance.Log("Some data to log", extra);

Passing a key/value pair passed into the Log() method you can add any
amount of extra data you want to your log very simply. When this log entry is
written, you end up with an entry that looks like the following:

3

'Informational' log entry written on 5/22/2012 5:53:47 AM,
from class: 'SL_Log.MainPage'
 Some data to log
Extra Values Passed In From Application
 CustomerId=1
 StateCode=CA

The Log Method
Let’s now take a look at the Log() method in the PDSALoggingManager class.
When you pass in a single string value, the following version of the Log()
method is called.

public void Log(string value)
{
 this.Log(value, "Informational", null);
}

This method calls another overload of the Log() method to which you can
pass in the “type” of log entry you are writing and a null in place of the
Dictionary object. By default, the Log() method uses “Informational” as the log
type. You can pass in whatever value you wish for this type.
The 2nd overload of this method is the one that you pass in the Dictionary
object to. This method calls the same Log() method as the previous one, but
this time passes the extra values from the Dictionary object.

public void Log(string value,
 Dictionary<string, string> extraValues)
{
 this.Log(value, "Informational", extraValues);
}

Now, let’s look at the version of the Log() method that does the actual work of
logging the string data, the type and optionally the extra dictionary values you
might pass in. The first thing Log() does is to call a method named
GetCallingClassName(). This method will be shown later, but it is used to
retrieve the name of the method in your Silverlight application that called the
Log() method. Next, it calls a method named Format() that will format the log
data into what you saw earlier in this blog. Finally, the entry is written to
isolated storage.

4

public void Log(string value, string logType,
 Dictionary<string, string> extraValues)
{
 IsolatedStorageFile file = null;
 string message = string.Empty;

 try
 {
 // Get the name of the calling method
 CallingClassName = GetCallingClassName();
 // Format the log entry
 message = Format(value, logType, extraValues);

 file = IsolatedStorageFile.GetUserStoreForSite();
 using (IsolatedStorageFileStream fs = new
 IsolatedStorageFileStream(LogFileName,
 FileMode.Append, file))
 {
 using (StreamWriter sw = new StreamWriter(fs))
 {
 sw.WriteLine(message);
 }
 }
 }
 catch (Exception ex)
 {
 TheLog.Append("Exception Occurred in Log() method" +
 Delimiter + ex.ToString());
 }
 finally
 {
 if (file != null)
 file.Dispose();
 }
}

Format Method
The Format() method is used to put the log entry into a readable format. A
StringBuilder object, named sb, is what is used to format the data and
concatenate all of the data together. Once all of the data is gathered up, this
local StringBuilder object is appended to the ‘TheLog’ property. This property
is kept in memory so you can retrieve the log during the running of your
application without having to read the data from the isolated storage file. This
property is also used to log any exception that occurs within the
PDSALoggingManager class itself.
Notice there is another property called Delimiter that is used to separate each
line of the log. This property is initialized in the constructor of the
PDSAloggingManager class to Environment.NewLine.

5

protected virtual string Format(string value, string logType,
 Dictionary<string, string> extraValues)
{
 StringBuilder sb = new StringBuilder(512);

 if (string.IsNullOrEmpty(Delimiter))
 Delimiter = Environment.NewLine;

 if (LogSystemInfo)
 sb.Append(new string('-', 200) + Delimiter);

 sb.Append("'" + logType + "'");
 sb.Append(" log entry written on "
 + DateTime.Now.ToString());
 if (!string.IsNullOrEmpty(CallingClassName))
 sb.Append(", from class: '" + CallingClassName + "'");
 sb.Append(Delimiter);
 sb.Append(" " + value + Delimiter);
 // Add on Extra Values
 sb.Append(FormatKeyValuePairs(extraValues));
 if (LogSystemInfo)
 {
 PDSASystemInfo si = new PDSASystemInfo();

 sb.Append(si.GetAllSystemInfo(Delimiter));
 sb.Append(Delimiter);
 sb.Append(new string('-', 200) + Delimiter);
 }

 // Append to the main log property
 TheLog.Append(sb.ToString());

 return sb.ToString();
}

A property called LogSystemInfo is initialized to true in the constructor of this
class. If set to true, then system information is gathered from the
PDSASystemInfo class and appended to the log. If there are any extra values
passed in the Dictionary object, those values are also appended to the log.
These are formatted in the FormatKeyValuePairs() method. You can look up
this method by downloading the code for this blog entry. See the end of this
blog for instructions on how to get this article and the associated code
sample.

GetCallingClassName Method
The PDSALoggingManager and PDSASystemInfo classes are located in a
DLL named PDSA.Silverlight and is referenced from your Silverlight
application. It is, of course, a best practice to put generic classes like this into
a separate DLL. However, there is another benefit we derived from doing this.
We want to retrieve the name of the method that called the Log() method so

6

we can record where Log() was called from. The StackFrame object is used
to retrieve each method in the stack trace. As we grab each method we can
check the method to see if it is in the current assembly and if it is, we will
ignore it. However, once we find a method that is in a different assembly, we
can assume that this is the assembly and method that called the Log()
method.

public string GetCallingClassName()
{
 int loop = 0;
 string ret = string.Empty;
 string currentName =
 Assembly.GetExecutingAssembly().FullName;

 try
 {
 StackFrame sf = new StackFrame(loop);
 while (sf.GetMethod() != null)
 {
 // Don't get any methods contained in this assembly.
 if (sf.GetMethod().DeclaringType.Assembly.FullName !=
 currentName)
 {
 ret = sf.GetMethod().DeclaringType.FullName;
 break;
 }

 loop++;
 sf = new System.Diagnostics.StackFrame(loop);
 }
 }
 catch
 {
 // Do nothing
 }

 return ret;
}

Logging Exceptions
In addition to logging string data, you might also wish to log exception data.
To facilitate this I added a LogException() method. This method will accept an
Exception object. By default, this method simply takes the result of the
ToString() method on the exception object and passes it to the Log() method.
However, you could modify this to retrieve any additional information from the
Exception object that you want and pass that to the Log() method.

7

try
{
 decimal ret = 10;

 ret = ret / 0;
}
catch (Exception ex)
{
 PDSALoggingManager.Instance.LogException(ex);
}

A second overload of the LogException() method allows you to pass in
additional information as a generic Dictionary object just like the original Log()
method allows.

decimal ret = 10;

try
{
 ret = ret / 0;
}
catch (Exception ex)
{
 Dictionary<string, string> extra =
 new Dictionary<string, string>();

 extra.Add("StackTraceFromException", ex.StackTrace);
 extra.Add("ret variable", ret.ToString());

 PDSALoggingManager.Instance.LogException(ex, extra);
}

Here is the output from logging the exception:

'Exception' log entry written on 5/22/2012 4:10:15 PM,
 from class: 'SL_Log.MainPage'
 System.DivideByZeroException: Attempted to divide by zero.
 at System.Decimal.FCallDivide(Decimal& d1, Decimal& d2)
 at System.Decimal.op_Division(Decimal d1, Decimal d2)
 at SL_Log.MainPage.btnLogException_Click(Object sender,
 RoutedEventArgs e)

Getting the Log from your User
Once you have logged the data, you might want to get that information. The
obvious choice would be to pass the complete log information to a WCF
service. I am not presenting that choice in this sample due to space.
However, one thing you need to consider is what if your user cannot access
the WCF service for some reason? In this case you should have a backup

8

plan. Two options you might consider are one, give the user a button they can
click on that will copy the log to the clipboard, and two, another button that
they can use to save the log data to a file on their computer. First, here is the
code you would write to copy the log to the clipboard.

try
{
 Clipboard.SetText(PDSALoggingManager.Instance.ReadLog());
}
catch
{
 MessageBox.Show("Can't copy to the Clipboard.");
}

The ReadLog() method returns the data from the TheLog property, or if that is
empty, will read the data from the isolated storage file. Next, you could read
the log data and pass that to a method that will prompt the user to enter the
name and location on their hard drive where to store the log data.

9

private void btnSaveToFile_Click(object sender,
 RoutedEventArgs e)
{
 SaveToFile(PDSALoggingManager.Instance.ReadLog());
}

private void SaveToFile(string contents)
{
 SaveFileDialog sfd = null;

 try
 {
 sfd = new SaveFileDialog();
 sfd.DefaultExt = "txt";
 sfd.Filter = "Log Files (*.log)|*.log|
 All Files (*.*)|*.*";
 sfd.FilterIndex = 1;

 bool? result = sfd.ShowDialog();

 if (result.HasValue && result == true)
 {
 using (StreamWriter sw =
 new StreamWriter(sfd.OpenFile()))
 {
 sw.Write(contents);
 sw.Close();
 }
 }
 }
 catch (Exception ex)
 {
 MessageBox.Show(ex.Message);
 }
}

After storing this file on their hard drive, they could then attach that file to an
email and send the log data to you.

10

Summary
Implementing a logging system in your Silverlight application is a great way to
keep track of what you user does in your application. It is also extremely
useful for tracking down errors. You must still be able to get the log file from
the user, but that is fairly easy using either the clipboard or saving to a file
and having your user email you the log. Hopefully this simple little class will
give you a head-start on creating your own logging system.

NOTE: You can download the sample code for this article by visiting my
website at http://www.pdsa.com/downloads. Select “Tips & Tricks”, then
select “Client-Side Logging in Silverlight” from the drop down list.

http://www.pdsa.com/downloads

	Client-Side Logging in Silverlight
	Logging Data
	Passing Extra Data to Log
	The Log Method
	Format Method
	GetCallingClassName Method
	Logging Exceptions
	Getting the Log from your User

