
1

Retrieve System Information in
Silverlight

In a Silverlight application we are building for a client, they wanted an About
screen that would display system information such as the current URL, the
operating system name and version, the product name and various other
information. In the same application, we built a logging system to gather this
same information and write that information to a file to help developers
troubleshoot issues. We decided to create a Silverlight class that would
gather the information shown in Figure 1.

Figure 1: A Silverlight system information class to gather information about the
user’s environment.

The class where all of this data comes from is named PDSASystemInfo. This
class contains a set of properties that get information from the current
executing assembly, the Environment class, and a few other classes that give

2

you system information in your Silverlight application. Let’s look at each of
these properties in turn.

The Constructor
First off, the constructor for this class retrieves the main assembly for your
Silverlight application. This is the first assembly that runs. I assume that the
first assembly is where your Silverlight user controls run from, so we need a
reference to that assembly in order to retrieve copyright, title, company, and
description information. You use the Application.Current.GetType() method to
get the Assembly object. From this object you will be able to retrieve the
Assembly information you place into your Silverlight application from Visual
Studio. A reference to this assembly is placed into a private variable called
_CurrentAssm.

public class PDSASystemInfo
{
 private Assembly _CurrentAssm = null;

 public PDSASystemInfo()
 {
 _CurrentAssm = Application.Current.GetType().Assembly;
 }

 …
 …
}

Assembly Information Properties
In Visual Studio if you go into the Project Properties of your solution you can
click on the Assembly Information button and enter information about your
assembly as shown in Figure 2.

3

Figure 2: The Visual Studio Assembly Information screen is where you enter
information about your application.

To retrieve this information at runtime, you use the Application’s main
assembly object to call the GetCustomAttributes() method. You pass to this
method a type that represents the piece of information you wish to retrieve
such as the Company, Product, etc.

4

public string Company
{
 get
 {
 Type at = typeof(AssemblyCompanyAttribute);
 object[] c = _CurrentAssm.GetCustomAttributes(at, false);
 AssemblyCompanyAttribute att =
 ((AssemblyCompanyAttribute)(c[0]));
 return att.Company;
 }
}

public string Description
{
 get
 {
 Type at = typeof(AssemblyDescriptionAttribute);
 object[] c = _CurrentAssm.GetCustomAttributes(at, false);
 AssemblyDescriptionAttribute att =
 ((AssemblyDescriptionAttribute)(c[0]));
 return att.Description;
 }
}

public string Product
{
 get
 {
 Type at = typeof(AssemblyProductAttribute);
 object[] c = _CurrentAssm.GetCustomAttributes(at, false);
 AssemblyProductAttribute att =
 ((AssemblyProductAttribute)(c[0]));
 return att.Product;
 }
}

public string Title
{
 get
 {
 Type at = typeof(AssemblyTitleAttribute);
 object[] c = _CurrentAssm.GetCustomAttributes(at, false);
 AssemblyTitleAttribute att =
 ((AssemblyTitleAttribute)(c[0]));
 return att.Title;
 }
}

public string Copyright
{
 get
 {
 Type at = typeof(AssemblyCopyrightAttribute);
 object[] c = _CurrentAssm.GetCustomAttributes(at, false);
 AssemblyCopyrightAttribute att =
 ((AssemblyCopyrightAttribute)(c[0]));

5

 return att.Copyright;
 }
}

public string Version
{
 get
 {
 AssemblyName an = new AssemblyName(_CurrentAssm.FullName);
 return an.Version.ToString();
 }
}

Operating System Name and Version
To retrieve the operating system name and version, it is the same as in any
.NET application. You will use the Environment class and the associated
properties on that class.

6

public string OSVersion
{
 get
 {
 return Environment.OSVersion.ToString();
 }
}

public string OSName
{
 get
 {
 string ret = string.Empty;

 switch (Environment.OSVersion.Version.Major)
 {
 case 7:
 ret = "Windows 8";
 break;
 case 6:
 if (Environment.OSVersion.Version.Minor == 0)
 ret = "Windows Vista";
 else if (Environment.OSVersion.Version.Minor == 1)
 ret = "Windows 7";
 break;
 case 5:
 if (Environment.OSVersion.Version.Minor == 0)
 ret = "Windows 2000";
 else if (Environment.OSVersion.Version.Minor == 1)
 ret = "Windows XP";
 break;
 case 4:
 ret = "Windows NT";
 break;
 default:
 ret = "Unknown Version";
 break;
 }

 return ret;
 }
}

The Current URL
A useful property in your application is finding out what the current URL is that
is running your Silverlight user control. This is very easy to get at using the
System.Windows.Browser.HtmlPage class. You access the
Document.DocumentUri property to retrieve the current URL that is running
on the user’s machine.

7

public string CurrentUrl
{
 get
 {
 try
 {
 return HtmlPage.Document.DocumentUri.ToString();
 }
 catch
 {
 return string.Format(_ERROR_MSG, "Current URL");
 }
 }
}

Get the Stack Trace
When you need to debug an application, having access to the stack trace is
very helpful. Getting the stack trace in a Silverlight client-side user control is
accomplished using the StackFrame class. If you get an exception in your
application, the Exception object you get has a StackTrace property that will
return your stack trace that got you to your exception. However, if you are not
in an exception and just want to get the stack trace information, you write
code like that shown in the GetStackTrace() method below.

8

public string GetStackTrace()
{
 StringBuilder sb = new StringBuilder(512);
 int loop = 0;
 string comma = string.Empty;
 string nameToMatch = MainAssemblyName;

 try
 {
 StackFrame sf = new StackFrame(loop);
 if (sf.GetMethod() != null)
 sb.Append("{");

 while (sf.GetMethod() != null)
 {
 // Get methods contained in this assembly only.
 if (sf.GetMethod().DeclaringType.Assembly.
 FullName.Equals(nameToMatch))
 {
 sb.Append(comma + sf.GetMethod().Name);
 comma = ",";
 }

 loop++;
 sf = new System.Diagnostics.StackFrame(loop);
 }
 if (sb.Length > 0)
 sb.Append("}");
 }
 catch
 {
 sb.AppendFormat(_ERROR_MSG, "Stack Trace");
 }

 return sb.ToString();
}

If you simply loop through all methods contained in the StackFrame you will
get a lot of methods that are part of Silverlight and not your application. In this
method you simply check to see if the methods are contained only in the main
assembly name. This will probably work fine for a simple Silverlight
application, but you may need to expand on this method if you have many
client-side DLLs and wish to use this method when you are within any of
those other DLLs.

9

Summary
There are a couple of other properties in the class that you can look at when
you download the source code. This class will give you a lot of information
that you will find useful when logging or creating an About page for your
application. There is also a method named GetAllSystemInfo() that can be
used to concatenate all of these properties together into one string. This
method is great for logging all of these properties into a file. I will cover a
client-side logging utility for Silverlight in my next blog post.

NOTE: You can download the sample code for this article by visiting my
website at http://www.pdsa.com/downloads. Select “Tips & Tricks”, then
select “Retrieve System Information in Silverlight” from the drop down list.

http://www.pdsa.com/downloads

	Retrieve System Information in Silverlight
	The Constructor
	Assembly Information Properties
	Operating System Name and Version
	The Current URL
	Get the Stack Trace

