
1

Dynamic Search with LINQ, the Entity
Framework and Silverlight – Part 2

After my previous blog post, I realized that using SQL strings is not a great
way to do things. Sometimes we start blogging too quick and then realize our
mistakes after. But, no big deal, live and learn... I am going to now rewrite this
application and use some lambda expressions to solve the problems inherit
with concatenating strings to SQL statements; namely escaping a single
quote and SQL Injection attacks. I am going to use the same search screen
shown in Figure 1.

Figure 1: A search screen where the user can select an operation and a value for
the searching on multiple fields.

2

Read the first blog post to see the calls to the WCF service. However, I want
to know show the revised code to build a dynamic WHERE clause.

3

C#
public List<Customer> GetCustomers(string cname, string
cnameOperator, string email, string emailOperator)
{
 AdventureWorksLTEntities db =
 new AdventureWorksLTEntities();

 var query = from cust in db.Customers select cust;

 if (string.IsNullOrEmpty(cname) == false)
 {
 switch (cnameOperator.ToLower())
 {
 case "equal to":
 query = query.Where(cust =>
 cust.CompanyName.Equals(cname));
 break;
 case "starts with":
 query = query.Where(cust =>
 cust.CompanyName.StartsWith(cname));
 break;
 case "contains":
 query = query.Where(cust =>
 cust.CompanyName.Contains(cname));
 break;
 }
 }
 if (string.IsNullOrEmpty(email) == false)
 {
 switch (emailOperator.ToLower())
 {
 case "equal to":
 query = query.Where(cust =>
 cust.EmailAddress.Equals(email));
 break;
 case "starts with":
 query = query.Where(cust =>
 cust.EmailAddress.StartsWith(email));
 break;
 case "contains":
 query = query.Where(cust =>
 cust.EmailAddress.Contains(email));
 break;
 }
 }

 query = query.OrderBy(cust => cust.CompanyName);

 return query.ToList();
}

VB
Public Function GetCustomers(cname As String, _
 cnameOperator As String, email As String, _
 emailOperator As String) As List(Of Customer) _
 Implements ICustomerSearch.GetCustomers

4

 Dim db As New AdventureWorksLTEntities

 Dim query = From cust In db.Customers Select cust

 If String.IsNullOrEmpty(cname) = False Then
 Select Case cnameOperator.ToLower()
 Case "equal to"
 query = query.Where(Function(cust) _
 cust.CompanyName.Equals(cname))

 Case "starts with"
 query = query.Where(Function(cust) _
 cust.CompanyName.StartsWith(cname))

 Case "contains"
 query = query.Where(Function(cust) _
 cust.CompanyName.Contains(cname))

 End Select
 End If
 If String.IsNullOrEmpty(email) = False Then
 Select Case emailOperator.ToLower()
 Case "equal to"
 query = query.Where(Function(cust) _
 cust.EmailAddress.Equals(email))

 Case "starts with"
 query = query.Where(Function(cust) _
 cust.EmailAddress.StartsWith(email))

 Case "contains"
 query = query.Where(Function(cust) _
 cust.EmailAddress.Contains(email))

 End Select
 End If

 query = query.OrderBy(Function(cust) cust.CompanyName)

 Return query.ToList()
End Function

As you can see in the above code you can simply use the Where() function
on your IQueryable query to add WHERE clauses that get submitted to the
back end database. It is always a good idea to turn on your SQL Profiler and
check out the SQL that gets submitted to the back end database.

5

Summary
The advantage to this approach is now you are relying on the Entity
Framework to handle escaping single quotes and avoiding the SQL injection
attacks that you would otherwise have to handle. I hope this shows you
something useful that you can use in your applications.

NOTE: You can download the sample code for this article by visiting my
website at http://www.pdsa.com/downloads. Select “Tips & Tricks”, then
select “Dynamic Search with LINQ, the Entity Framework and Silverlight –
Part 2” from the drop down list.

http://www.pdsa.com/downloads

	Dynamic Search with LINQ, the Entity Framework and Silverlight – Part 2

