
1

Dynamic Search with LINQ, the Entity
Framework and Silverlight

I have been helping a client with a Silverlight application and one of his
requirements was to allow his users to be able to query 1 to 5 fields and use
different operators for each field. For example, they can choose to search for
a Company Name that “Starts With” a certain value and also search for an
Email field that “Contains” another value. You can see an example of this
search screen in Figure 1.

Figure 1: A search screen where the user can select an operation and a value for
the searching on multiple fields.

To make this search screen work you must pass two values for each search
parameter you want to use. You need the operator to use and the value to

2

search for. In this example I pass 4 parameters to a WCF Service. You might
modify this method to pass in a collection of objects that contain the different
values for each search.
In the code listed below you can see the Click event procedure behind the
Search button on the screen. I did not use a View Model for this simple
example since the point of this blog has to do with a dynamic LINQ search on
the back end, but feel free to add your own View Model class.

3

C#
private CustomerSearchClient _Client = null;

private void btnGetCustomers_Click(object sender,
 RoutedEventArgs e)
{
 _Client = new CustomerSearchClient();

 _Client.GetCustomersCompleted += new
 EventHandler<GetCustomersCompletedEventArgs>
 (_Client_GetCustomersCompleted);

 _Client.GetCustomersAsync(txtCompanyName.Text,
 ((ComboBoxItem)cboCompanyOperator.SelectedItem)
 .Content.ToString(),
 txtEmail.Text,
 ((ComboBoxItem)cboEmailOperator.SelectedItem)
 .Content.ToString());
}

void _Client_GetCustomersCompleted(object sender,
 GetCustomersCompletedEventArgs e)
{
 lstCustomers.DataContext = e.Result;

 _Client.CloseAsync();
}

Visual Basic
Private WithEvents _Client As CustomerSearchClient

Private Sub btnGetCustomers_Click(sender As System.Object, _
 e As System.Windows.RoutedEventArgs) _
 Handles btnGetCustomers.Click
 _Client = New CustomerSearchClient()

 _Client.GetCustomersAsync(txtCompanyName.Text, _
 DirectCast(cboCompanyOperator.SelectedItem, _
 ComboBoxItem).Content.ToString(), _
 txtEmail.Text, _
 DirectCast(cboEmailOperator.SelectedItem, _
 ComboBoxItem).Content.ToString())
End Sub

Private Sub _Client_GetCustomersCompleted(sender As Object, _
 e As _
 CustomerServiceReference.GetCustomersCompletedEventArgs) _
 Handles _Client.GetCustomersCompleted
 lstCustomers.DataContext = e.Result

 _Client.CloseAsync()
End Sub

In the code above you create an instance of a WCF Service reference that
calls the method named GetCustomers(). This method takes the company

4

name value, the operator for how to search for the company name, the email
value and the operator for how to search for the email. These four values are
simply taken from the appropriate controls on this Silverlight user control.

Building the Dynamic LINQ Search
To dynamically build a LINQ search from the 4 values passed into the WCF
Service you add an ADO.NET Entity Data Model to query against. In this
sample I used the AdventureWorksLT database and added the Customer
table to my Entity Data Model. I named this Entity Data Model AdvWorks. I
then built a WCF Service named CustomerSearch and added the
GetCustomers() method with the 4 parameters. You will need to add a
using/Imports to the System.Data.Objects namespace in order to use the
ObjectQuery class.
The ObjectQuery class allows you to use your Entity Framework context
classes within a string to express your query. The complete code for the
GetCustomers() method is listed further below, but let me give you just a
simple little sample of how this works. Take the example below:

5

C#
AdventureWorksLTEntities db =
 new AdventureWorksLTEntities();

ObjectQuery<Customer> query = null;

sql = "SELECT VALUE cust FROM
 AdventureWorksLTEntities.Customers As cust ";
sql += " ORDER BY cust.CompanyName";

query = db.CreateQuery<Customer>(sql);

Visual Basic
Dim db As New AdventureWorksLTEntities

Dim query As ObjectQuery(Of Customer)

sql = "SELECT VALUE cust FROM
 AdventureWorksLTEntities.Customers As cust "
sql &= " ORDER BY cust.CompanyName"

query = db.CreateQuery(Of Customer)(sql)

In the above code you use the AdventureWorksLTEntities class which is
created by the Entity Framework when you add a Data Model to the
AdventureWorksLT database. A Customers collection object is created
within this class to hold a collection of Customer objects. You must use these
names within your string object. You also need to use the keyword “VALUE”
followed by an alias name, as I used “cust” in the above example. If you will
need to reference any specific column names within a WHERE clause or an
ORDER BY clause you will reference those column names using this alias.
Once you have created the SQL string you use your
AdventureWorksLTEntities object, the variable db in the code above, and call
the CreateQuery() method passing in the SQL string you created. This will
build a collection of Customer objects by executing this query against the
database. You can view the query that is expressed by turning on the SQL
Profiler and tracing any T-SQL calls to the database.
The complete GetCustomers() method builds the SQL statement dynamically
by checking if the company name parameter or the email parameter is filled
in. If they are filled in then an appropriate WHERE clause is added to the
SELECT statement. You can now look at the complete GetCustomers()
method below:

6

C#
using System.Collections.Generic;
using System.Data.Objects;
using System.Linq;

public class CustomerSearch : ICustomerSearch
{
 public List<Customer> GetCustomers(string cname,
 string cnameOperator,
 string email,
 string emailOperator)
 {
 AdventureWorksLTEntities db =
 new AdventureWorksLTEntities();
 string join = " WHERE ";
 string sql = null;
 ObjectQuery<Customer> query = null;

 sql = "SELECT VALUE cust FROM
 AdventureWorksLTEntities.Customers As cust ";

 if (string.IsNullOrEmpty(cname) == false)
 {
 sql += join + " cust.CompanyName " +
 BuildWhere(cnameOperator, cname);
 join = " AND ";
 }
 if (string.IsNullOrEmpty(email) == false)
 {
 sql += join + " cust.EmailAddress " +
 BuildWhere(emailOperator, email);
 join = " AND ";
 }

 sql += " ORDER BY cust.CompanyName";

 query = db.CreateQuery<Customer>(sql);

 return query.ToList();
 }

 public string BuildWhere(string operatorValue, string value)
 {
 string where = string.Empty;

 switch (operatorValue.ToLower())
 {
 case "equal to":
 where = " = '" + value + "'";
 break;
 case "starts with":
 where = " LIKE '" + value + "%'";
 break;
 case "contains":
 where = " LIKE '%" + value + "%'";
 break;

7

 }

 return where;
 }
}

Visual Basic
Imports System.Data.Objects

Public Class CustomerSearch
 Implements ICustomerSearch

 Public Function GetCustomers(cname As String, _
 cnameOperator As String, _
 email As String, _
 emailOperator As String) As List(Of Customer) _
 Implements ICustomerSearch.GetCustomers

 Dim db As New AdventureWorksLTEntities
 Dim join As String = " WHERE "
 Dim sql As String
 Dim query As ObjectQuery(Of Customer)

 sql = "SELECT VALUE cust FROM
 AdventureWorksLTEntities.Customers As cust "

 If String.IsNullOrEmpty(cname) = False Then
 sql &= join & " cust.CompanyName " & _
 BuildWhere(cnameOperator, cname)
 join = " AND "
 End If
 If String.IsNullOrEmpty(email) = False Then
 sql &= join & " cust.EmailAddress " & _
 BuildWhere(emailOperator, email)
 join = " AND "
 End If

 sql &= " ORDER BY cust.CompanyName"

 query = db.CreateQuery(Of Customer)(sql)

 Return query.ToList()
 End Function

 Public Function BuildWhere(operatorValue As String, _
 value As String) As String
 Dim where As String = String.Empty

 Select Case operatorValue.ToLower()
 Case "equal to"
 where = " = '" & value & "'"

 Case "starts with"
 where = " LIKE '" & value & "%'"

 Case "contains"
 where = " LIKE '%" & value & "%'"

8

 End Select

 Return where
 End Function
End Class

To build the WHERE clause you notice that I pass in the operator such as
“Equal To”, “Starts With”, or “Contains” to a method called BuildWhere(). This
method builds the expression for the WHERE clause. If the value of the
operator is “Equal To”, then the equal sign (=) followed by the exact value
typed into the text box wrapped into single quotes is returned. If the operator
passed in is “Starts With”, then a LIKE operator followed by a single quote,
the value typed into the text box, and a percent sign (%) and a closing single
quote is returned. It the operator is “Contains”, then a percent sign is wrapped
on both sides of the value typed into the text box with a LIKE operator.
All of this will build a SELECT statement that might look like one the following:

SELECT VALUE cust
 FROM AdventureWorksLTEntities.Customers As cust
 WHERE cust.CompanyName LIKE 'a%'
 ORDER BY cust.CompanyName

or

SELECT VALUE cust
 FROM AdventureWorksLTEntities.Customers As cust
 WHERE cust.CompanyName LIKE '%a%'
 AND cust.EmailAddress LIKE 'o%'
 ORDER BY cust.CompanyName

or

SELECT VALUE cust
 FROM AdventureWorksLTEntities.Customers As cust
 WHERE cust.EmailAddress LIKE 'a%'
 ORDER BY cust.CompanyName

9

Summary
While there are other approaches to this problem, I really like this one,
because it helps me control the SQL that the Entity Framework submits to the
back end database. When using LINQ, sometimes the SQL that the Entity
Framework can be pretty convoluted. Using the CreateQuery() method I can
sometimes craft the SQL a little closer to what will be eventually submitted to
the back end and this can really improve the performance in a lot of cases. I
hope you will find this little trick helpful.

NOTE: You can download the sample code for this article by visiting my
website at http://www.pdsa.com/downloads. Select “Tips & Tricks”, then
select “Dynamic Search with LINQ, the Entity Framework and Silverlight” from
the drop down list.

http://www.pdsa.com/downloads

	Dynamic Search with LINQ, the Entity Framework and Silverlight
	Building the Dynamic LINQ Search

