
An Architecture for WPF
Applications

In this blog post, you learn to create a standard architecture for your WPF
applications. You learn what common classes you need, what kind of library to put
those classes into, and how each of the libraries are referenced from your main
application.

Architecture Overview
Designing an architecture for a WPF application is like any other kind of application
you build. You always strive to make sure classes and libraries of classes are as
reusable and as stand-alone as possible. This makes the maintenance of
applications easier, and also increases their reusability and testability. Figure 1
shows a breakdown of the different class libraries you would have to support for
each WPF application you build.

An Architecture for WPF Applications

2 An Architecture for WPF Applications
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 1: Overview of a WPF Architecture

If you were to implement the architecture shown in Figure 1 in a .NET solution, the
results would look like Figure 2.

Architecture Overview

An Architecture for WPF Applications 3
Copyright © 2012-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Figure 2: A sample WPF solution

A description of each project and what each one is used for is shown in Table 1.

Project Description

Common.Library This is a class library project into which you can add classes and
other items that are UI agnostic (i.e. these classes can be used in
any type of project such as Windows Forms, Web Forms, MVC,
Web API, WPF, etc).

WPF.Common This is a WPF library project into which you can add classes, user
controls, resource dictionaries, converters, and other XAML to be
used in any WPF application. Keep the items in this project
generic and able to be used in any WPF application.

WPF.Sample This is a sample WPF application that shows how all of these
projects are connected together.

WPF.Sample.AppLayer This is a WPF library project into which you can add any WPF
classes, user controls, resource dictionaries, etc. that are unique
for this WPF application.

WPF.Sample.DataLayer This is a class library project into which you can put any data
access classes you need to support this project. The Entity
Framework (EF) library is already added into this project to make
it easy for you to add your own EF entity and model classes.

WPF.Sample.ViewModelLayer This is a class library project into which you can put any view
model classes you need to support this WPF project. View model
classes are used to bind to the UI and insulate the WPF project
from the data access layer.

Table 1: Description of each project in your WPF sample solution

Let's look at each project and the types of classes you should be putting into each
of these projects.

An Architecture for WPF Applications

4 An Architecture for WPF Applications
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Common.Library Project
The sample Common.Library project (Figure 3) that comes with this blog post,
illustrates a common set of classes that can be used in any .NET application. The
types of classes you place into this class library project should NOT have any
dependencies on a specific UI such as Windows Forms, WPF, or ASP.NET.

Figure 3: The Common.Library Project

Each class in this Common.Library project is described in Table 2.

Class Description

ConfigurationSettings A class for reading settings from a configuration file.

ExceptionManager A class for publishing exceptions.

WPF.Common Library

An Architecture for WPF Applications 5
Copyright © 2012-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

MessageBroker The main class that sends the messages and defines the event
signature for receiving messages. Using a message broker helps
you avoid strong coupling between components in your
applications.

MessageBrokerEventArgs The MessageBrokerEventArgs class inherits from the
System.EventArgs class and adds a couple of additional properties
needed for our message broker system. The properties are
MessageName and MessagePayload. The MessageName property
is a string value. The MessagePayload property is an object type
so that any kind of data may be passed as a message.

MessageBrokerMessages This class contains public constants that can be used for sending
standard messages such as "CloseControl,"
"DisplayStatusMessage," etc. Instead of repeating strings
throughout your application, it is better to use constants within a
class.

ViewModelAddEditDeleteBase A base view model class for screens in which you list, add, edit,
and delete items from a database table. This class inherits from
the ViewModelBase class.

ViewModelBase A base view model class for all your view models. This class
inherits from the CommonBase class.

ValidationMessage This class contains two properties; PropertyName and Message.
This is used to report any validation rules that fail.

CommonBase This class implements the INotifyPropertyChanged event. This
class also implements a Clone() method used to copy all
properties from one object to another and forces each property to
raise its INotifyPropertyChanged event.

StringHelper A class for you to put any methods to help you work with strings.
There are a couple of methods in here such as
CreateRandomString(), IsValidEmail(), IsAllLowerCase() and
IsAllUpperCase().

Table 2: Description of each item in the Common.Library project

WPF.Common Library
The WPF.Common class library (Figure 4) is created as the WPF User Control
Library project from the Visual Studio list of project templates. Using these
templates includes the DLLs necessary to support WPF user controls, resource
dictionaries, converters, and other WPF-specific items.
Where the Common.Library is UI-agnostic, the WPF.Common library is for you to
add any component necessary to support any WPF application you develop. Keep
the components in this library generic so you can use it with any WPF application,
and not just the one you are currently developing. Any components that are specific
to your current project belong in the "WPF" or the "AppLayer" projects.

An Architecture for WPF Applications

6 An Architecture for WPF Applications
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

I have included a few folders to illustrate what you might add to this project. The
Converters folder is where you put any data type converter classes. The
Resources folder is where you put resource dictionaries. The UserControls folder
is where you put any commonly used user controls.

WPF.Common Library

An Architecture for WPF Applications 7
Copyright © 2012-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

An Architecture for WPF Applications

8 An Architecture for WPF Applications
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 4: The WPF.Common Project

Each item in this WPF.Common project is described in Table 3.

File Description

\Converters folder A folder where you can put any WPF converter classes

\Images folder A folder of some standard images you might find useful.

StandardStyles.xaml A resource dictionary of styles.

\UserControls A folder for any reusable user controls

Table 3: Description of each item in the WPF.Common project

WPF.Sample Project
This project (Figure 5) is a starting point for the WPF application you are creating. I
have included a MainWindow with a menu system, some images, and a sample
SQL Server express database with a table in it. You will normally take this project
and start adding on your own user controls to display within the main window.
In future blog posts, you are going to use this project to build some standard
business screens.

WPF.Sample.AppLayer Library

An Architecture for WPF Applications 9
Copyright © 2012-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Figure 5: The WPF.Sample Project

Each item in this WPF.Sample project is described in Table 4.

Item Name Description

Sample.mdf A SQL Server express database that contains a single User table.

App.config The configuration settings for this application.

App.xaml Any styles for this application. The App class contains code to set the Domain
property DataDirectory and reads all configuration settings for this
application.

MainWindow.xaml The main window for this application.

Table 4: Description of each item in the WPF.Sample project

WPF.Sample.AppLayer Library
The WPF.Sample.AppLayer library (Figure 6) is where you can add classes that are
specific to this application.

An Architecture for WPF Applications

10 An Architecture for WPF Applications
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 6: The WPF.Sample.AppLayer Project

Each item in this WPF.Sample.AppLayer project is described in Table 5.

Class Name Description

AppMessages This class inherits from the MessageBrokerMessages class. Add any application-
specific messages you need for your WPF application.

AppSettings This class inherits from the ConfigurationSettings class in the Common.Library
project. Place any properties for any global settings you need for your WPF
application. Also write code to load those settings from the App.config file into the
LoadSettings() method.

Table 5: Description of each item in the WPF.Sample.AppLayer project

WPF.Sample.DataLayer Library
You should always keep your data access classes in a separate library. This helps
you reuse these classes in any other application should you need to. The
WPF.Sample.DataLayer library (Figure 7) uses the Entity Framework to access the
Sample.mdf file contained in the WPF.Sample project. You may use any data
access technology you want in this project.

WPF.Sample.ViewModelLayer Library

An Architecture for WPF Applications 11
Copyright © 2012-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Figure 7: The WPF.Sample.DataLayer Project

Each item in this WPF.Sample.DataLayer project is described in Table 6.

Class Name Description

User This is a simple entity class that models each column in the User table
contained in the Sample.mdf database.

SampleDbContext This class inherits from the DbContext class from the Entity Framework. It
creates a DbSet<User> property to allow you to access the data in the User
table.

Table 6: Description of each item in the WPF.Sample.DataLayer project

NOTE: This project is for illustration purposes only. Feel free to use any data
access mechanism you want.

WPF.Sample.ViewModelLayer Library
You should always use the MVVM design pattern when creating WPF applications.
All your view models for each of your screens should be put into the
WPF.Sample.ViewModelLayer class library (Figure 8). Add additional view model
classes to this project as you add new screens to your WPF application.

An Architecture for WPF Applications

12 An Architecture for WPF Applications
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 8: The WPF.Sample.ViewModelLayer Project

Each item in this WPF.Sample project is described in Table 7.

Class Name Description

MainWindowViewModel This is the view model for the main window in the WPF application.

Table 7: Description of each item in the WPF.Sample.ViewModelLayer project

Summary
It is important to create a good starting architecture prior to writing any application.
Use "Separation of Concerns" as the guiding principle when writing applications and
you will never go wrong. Feel free to add more layers to the sample outlined in this
blog post. Also feel free to add additional classes to each of the projects as needed.
The sample outlined should give you a good head-start on building reusable,
maintainable, and testable WPF applications.

NOTE: You can download the sample code for this article by visiting my website at
http://www.pdsa.com/downloads. Select “Fairway/PDSA Blog,” then select “An
Architecture for WPF Applications” from the dropdown list.

http://www.pdsa.com/downloads

	An Architecture for WPF Applications
	Architecture Overview
	Common.Library Project
	WPF.Common Library
	WPF.Sample Project
	WPF.Sample.AppLayer Library
	WPF.Sample.DataLayer Library
	WPF.Sample.ViewModelLayer Library
	Summary

