

Avoid SQL Injection Attacks When Using
Dynamic SQL

While there are many programmers who use the Entity Framework these
days for database access, there are still many who do not. Many
programmers still use ADO.NET directly to perform standard CRUD logic.
When you must use dynamic SQL to perform queries, it is very important to
not let any SQL injection attacks through.
A SQL injection is a technique whereby a hacker will attempt to damage your
data by submitting SQL through one of your web pages. If you are using
dynamic SQL to build a SQL statement that will be submitted to your
database, make sure you are doing it correctly. To illustrate a SQL injection
attack, let’s look at a typical login page like that shown below:

When the user clicks on the Login button, you are going to look in two
columns of your AppUser table to see if the data input matches the data in
any of the rows of this table. Below is a script that will create the AppUser
table and add some data.

Avoid SQL Injection Attacks

2 Tips and Tricks for Flexible Code
Copyright © 2014 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

CREATE TABLE AppUser
(
 Login char(16) not null primary key,
 Password varchar(20) not null
);

INSERT INTO AppUser values('PaulS', 'password');
INSERT INTO AppUser values('JohnK', 'password');

You can copy and paste the above SQL code into your database
management system and create this table. To create the login screen, build a
LoginViewModel class with two properties to bind to the two fields on the web
page.

public class LoginViewModel
{
 public string Login { get; set; }
 public string Password { get; set; }
}

After you have created the table and the LoginViewModel class, build the
login page using Bootstrap classes.

 Add Login Method

Tips and Tricks for Flexible Code 3
Copyright © 2014 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

@model DynamicSQLSample.LoginViewModel

@{
 ViewBag.Title = "Login Page";
}

@using (Html.BeginForm()) {
 <div class="row">
 <div class="col-xs-12 col-sm-6">
 <div class="panel panel-primary">
 <div class="panel-heading">
 <h3 class="panel-title">Log in</h3>
 </div>
 <div class="panel-body">
 <div class="form-group">
 @Html.LabelFor(m => m.Login)
 @Html.TextBoxFor(m => m.Login,
 new { @class = "form-control" })
 </div>
 <div class="form-group">
 @Html.LabelFor(m => m.Password)
 @Html.TextBoxFor(m => m.Password,
 new { @class = "form-control",
 type = "password" })
 </div>
 </div>
 <div class="panel-footer">
 <button type="submit" class="btn btn-primary">
 Login
 </button>
 </div>
 </div>
 </div>
 </div>
}

Add Login Method
Now that you have the page created and the view model, add a Login()
method to the LoginViewModel class.

Avoid SQL Injection Attacks

4 Tips and Tricks for Flexible Code
Copyright © 2014 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

public bool Login()
{
 bool ret = false;
 string sql = string.Empty;
 string conn = string.Empty;
 int rows = 0;
 SqlCommand cmd = null;

 conn = @"Server=(LocalDB)\MSSQLLocalDB;";
 conn +=
@"AttachDbFilename=|DataDirectory|\LoginSample.mdf;";
 conn += "Integrated Security=True;";

 sql = "SELECT COUNT(*) As TotalRows FROM AppUser ";
 sql += "WHERE Login = '{0}' AND Password = '{1}'";
 sql = string.Format(sql, this.Login, this.Password);

 using (cmd = new SqlCommand(sql, new SqlConnection(conn))) {
 cmd.Connection.Open();

 rows = Convert.ToInt32(cmd.ExecuteScalar());

 ret = rows > 0;
 }

 return ret;
}

Create the Controller
In the controller for your login page, write the Get and Post methods.

 Create the Controller

Tips and Tricks for Flexible Code 5
Copyright © 2014 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

public ActionResult Index()
{
 LoginViewModel vm = new LoginViewModel();

 return View(vm);
}

[HttpPost]
public ActionResult Index(LoginViewModel vm)
{
 vm.Login();

 // TODO: Do something after attempting login

 return View(vm);
}

Set a breakpoint in the Login() method, run the page and enter a valid login
and password into the fields and click on the Login button. If you wrote the
code correctly, you should see one row returned from the ExecuteScalar()
method. While the above method works, let’s learn how a hacker would take
advantage of this web page to potentially damage your data. This does
assume that the hacker has found out the name of the table you are using to
store your data. But, if they find out, then they would enter the following text
into your login field. They can just type any text into the password field.

'; DELETE FROM AppUser; --

The above string entered into your login field will create SQL that looks like
the following:

SELECT Count(*) As TotalRows
FROM AppUser WHERE Login = '';

DELETE FROM AppUser; --' AND Password = ''

The first single quote entered by the hacker closes the beginning quote of the
Login field. This makes the WHERE clause valid. The SQL parser will then
consider this a valid SQL statement and execute it. The next statement is
DELETE From AppUser; followed by two dashes. This tells the SQL parser to
ignore the rest of the text. The net effect is you get zero rows returned, but all
rows in the AppUser table have been deleted!

Avoid SQL Injection Attacks

6 Tips and Tricks for Flexible Code
Copyright © 2014 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Use Parameters
With just a few minor changes to the code in the Login() method, you can
protect yourself against this type of attack. Instead of using string.Format() or
otherwise just concatenating your SQL and user input together, use
SqlParameter objects.
First off, modify the lines of code that build your SQL string, to look like the
following:

sql = "SELECT COUNT(*) As TotalRows FROM AppUser ";
sql += "WHERE Login = @Login AND Password = @Password";

Next, after the using() statement and before you open your connection, add
the following lines of code to build parameters on the SqlCommand object.

using (cmd = new SqlCommand(sql, new SqlConnection(conn))) {
 cmd.Parameters.Add(
 new SqlParameter("@Login", this.Login));
 cmd.Parameters.Add(
 new SqlParameter("@Password", this.Password));

 cmd.Connection.Open();

All of the rest of the code in the Login() method stays the same. When you
use SqlParameter objects, the ADO.NET SQL engine ensures no SQL
injection attacks can occur. This is much better than you trying to check all
input to make sure there is no potentially harmful code. The Entity Framework
uses SqlParameter objects to submit all SQL to the database.

Summary
If you still use ADO.NET to submit SQL to your database, make sure you are
using SqlParameter objects and are not passing user data directly to your
database. With just a few extra lines of code, and changing how you create
your SQL statements you ensure you will not be a victim of a SQL injection
attack.

	Avoid SQL Injection Attacks When Using Dynamic SQL
	Add Login Method
	Create the Controller
	Use Parameters
	Summary

