

Extension Methods
Extension methods allow you to add your own custom method to an existing
type. While this seems like a cool feature, there are a few reasons to use
extension methods sparingly.

• Adding too many extension methods to an existing type clutters the
API.

• If you name your extension method the same as a built-in method
yours will never be called.

• If you name your extension method the same as another extension
method your method shadows the other extension method.

Because of the above points, you might consider just inheriting from the
existing type and adding your own additional methods to this new class. But,
with these disclaimers in place, let’s learn how you create extension methods
because there are cases where using them is perfectly acceptable.
To create extension methods you define a static class with any name you like.
Listing 1 shows a class named StringExtensions. This listing shows a
couple of the available methods such as ReverseString and ToBoolean. All
extension methods must also use the static keyword. The first parameter
passed to an extension method is the same as the type you are extending
and must be prefixed with the keyword “this”. Creating classes and methods
using these rules informs the compiler to add these methods to the type
specified in the first parameter.

Error! No text of specified style in document.

2 Tips and Tricks for Flexible Code
Copyright © 2014 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

public static class StringExtensions
{
 public static string Reverse(this string value)
 {
 char[] charArray = null;
 string ret = string.Empty;

 if (value != null)
 {
 charArray = value.ToCharArray();
 Array.Reverse(charArray);

 ret = new string(charArray);
 }

 return ret;
 }

 public static bool ToBoolean(this string value)
 {
 bool ret = false;

 switch (value.ToLower())
 {
 case "true":
 case "t":
 case "yes":
 case "y":
 case "1":
 case "-1":
 ret = true;
 break;
 case "false":
 case "f":
 case "no":
 case "n":
 case "0":
 ret = false;
 break;
 default:
 ret = false;
 break;
 }

 return ret;
 }
}

Listing 1: The StringExtensions class extends the string class with additional
methods.

To use the methods shown in Listing 1, create an instance of type you are
extending. After your new variable type a dot (.) and your extension methods
show up in the IntelliSense as shown in Figure 1.

 Extension Methods

Tips and Tricks for Flexible Code 3
Copyright © 2014 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Figure 1: Using extension methods is the same as any other method on a type.

In the samples that you can download with this article you will find another
class that works with the DateTime type.

	Extension Methods

