

Generics Eliminate Duplicate Code
Prior to .NET 2.0 when you needed a single method to work with different
data types the only way to accomplish this was to pass an ‘object’ data type
to that method. Working with the object data type introduces performance
problems and bugs that can occur at runtime. The alternative is to create a
new method for each data type that you wished to work with. This introduces
a maintenance nightmare and leads to a larger API for programmers to learn.
An example of using individual methods is shown in the code snippet that
follows. Notice the calls to two different “ConvertTo” methods; ConvertToInt
and ConvertToDateTime. The only difference between these two methods is
the data types being passed in as parameters.

private void HardCodedNonGenericsSample()
{
 object value = "1";

 int i = ConvertToInt(value, default(int));

 value = "1/1/2014";
 DateTime dt = ConvertToDateTime(value, default(DateTime));
}

The ConvertToInt method shown in the following code snippet accepts two
‘object’ parameters and returns an ‘int’ data type.

public int ConvertToInt(object value, object defaultValue)
{
 if (value == null || value.Equals(DBNull.Value))
 return Convert.ToInt32(defaultValue);
 else
 return Convert.ToInt32(value);
}

Now look at the ConvertToDateTime method shown below. It is almost the
exact same code except the return value is different and the use of the
Convert.ToDateTime method instead of the Convert.ToInt32 method.

Error! No text of specified style in document.

2 Tips and Tricks for Flexible Code
Copyright © 2014 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

public DateTime ConvertToDateTime(object value,
 object defaultValue)
{
 if (value == null || value.Equals(DBNull.Value))
 return Convert.ToDateTime(defaultValue);
 else
 return Convert.ToDateTime(value);
}

Create One Generic Method
The two methods shown above can be rewritten in one method by using
generics. To convert the above two methods into one you simply look at the
data types in the two methods that are different. You substitute these
differences with a “T” which stands for type parameter. The result is shown in
the following code snippet:

public T ConvertTo<T>(object value, object defaultValue)
{
 if (value == null || value.Equals(DBNull.Value))
 return (T)Convert.ChangeType(defaultValue, typeof(T));
 else
 return (T)Convert.ChangeType(value, typeof(T));
}

The code “public T” means you have a public method that passes back the
type specified in the <T> that comes after the method name. For the return
type you cast either the ‘defaultValue’ or the ‘value’ to the type that was
passed in.
To use this new ConvertTo method you pass in the data type you are
converting into with a less than sign and a greater than sign as shown in the
following code snippet:

 Generics Eliminate Duplicate Code

Tips and Tricks for Flexible Code 3
Copyright © 2014 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

private void HardCodedGenericsSample()
{
 object value = "1";

 int i = ConvertTo<int>(value, default(int));

 value = "1/1/2014";
 DateTime dt = ConvertTo<DateTime>(value, default(DateTime));
}

Generic Lists
Prior to .NET 2.0 you were required to create your own collection classes to
provide type-safety. Type safety means you create a class that only allows
you to pass in one type of object. For example, you may have a collection of
string, int, or Product objects. You cannot pass an int to a string collection or
a Product object to an int collection. To create a type-safe collection you
inherit from the CollectionBase class and override many properties and
methods. Listing 2 shows some of the code you are required to write for each
unique collection class you wish to create. As you can see, this is quite a bit
of code.

Error! No text of specified style in document.

4 Tips and Tricks for Flexible Code
Copyright © 2014 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

public class Int16Collection : CollectionBase
{
 public Int16 this[int index]
 {
 get
 {
 return ((Int16)List[index]);
 }
 set
 {
 List[index] = value;
 }
 }

 public int Add(Int16 value)
 {
 return (List.Add(value));
 }

 public int IndexOf(Int16 value)
 {
 return (List.IndexOf(value));
 }

 public void Insert(int index, Int16 value)
 {
 List.Insert(index, value);
 }

 public void Remove(Int16 value)
 {
 List.Remove(value);
 }

 public bool Contains(Int16 value)
 {
 return (List.Contains(value));
 }

 // Additional methods...
}

Listing 1: An example of using the old CollectionBase class.

Instead of writing all the code shown in Listing 2, you use one of the Generic
collection classes instead. For example, you can replace the code in Listing 2
with just the following three lines of code!

 Summary

Tips and Tricks for Flexible Code 5
Copyright © 2014 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

public class IntCollection : List<int>
{
}

The class IntCollection class created in the previous code snippet is type-
safe and will only accept an int data type. You cannot add a string or a
decimal type to this collection. You get all of the same features you get with
CollectionBase such as the ability to add, remove, insert and check to see if a
value is contained within the collection. But you do not have to write all of the
code for it.
The generic List<T> class is just one example of the many list classes
available to you in the System.Collections.Generic namespace. Other
examples are Dictionary<TKey, TValue> which allows you to store key/value
pairs generically. You also have stacks, queues and linked lists implemented
using generics. All of these save a ton of code and a ton of time.

Summary
Generics have been a great addition to .NET for many years now. Take
advantage of these great constructs to cut down the amount of code you have
to write.

	Generics Eliminate Duplicate Code
	Create One Generic Method
	Generic Lists

	Summary

