
Security in Angular - Part 3

In my last two blogs, you created a set of Angular classes to support user
authentication and authorization. You also built a .NET Core Web API project to
authenticate a user by calling a Web API method. An authorization object was
created with individual properties for each item you wished to secure in your
application. In this blog, you are going to build an array of claims, and eliminate the
use of single properties for each item you wish to secure. Using an array of claims
is a much more flexible approach for large applications.

The Starting Application
To follow along with this article, download the accompanying ZIP. After extracting
the sample from the ZIP file, there is a VS Code workspace file you can use to load
the two projects in this application. If you double-click on this workspace file, the
solution is loaded that looks like Figure 1. There are two projects; PTC is the
Angular application. PtcApi is the ASP.NET Core Web API project.
In the last post, mock data was used for products, categories, users and
authorization. The starting application in this post has removed all mock data and
now connects to an SQL Server database to get this data. No changes were made
to the Angular application.

Security in Angular

2 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 1: The starting application has two projects; the Angular project (PTC) and the .NET
Core Web API project (PtcApi).

The PTC Database
There is an SQL Server Express database named PTC included in the ZIP file.
Open the PtcDbContext.cs file located in the \PtcApi\Model folder. Change the
path in connection string constant to point to the folder in which you installed the
files from this ZIP file. If you do not have SQL Server Express installed, you can use
the PTC.sql file located in the \SqlData folder to create the appropriate tables in
your own SQL Server instance.

The PTC Database

Security in Angular 3
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Security Tables Overview
The PTC database has two tables besides the product and category tables; User
and UserClaim (Figure 2). These tables are like the ones you find in the ASP.NET
Identity System from Microsoft. I have simplified the structure just to keep the code
small for this sample application.

Figure 2: Two security tables are needed to authenticate and authorize a user.

User Table
The user table contains information about a specific user such as their user name,
password, first name, last name, etc. For purposes of this blog, I have simplified this
table to just a unique id (UserId), the name for the login (UserName) and the
Password for the user.
Please note that I am using a plain-text password in the sample for this application.
In a production application, this password should always be either encrypted or
hashed.

Figure 3: Example data in the User table.

Security in Angular

4 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

User Claim Table
In the UserClaim table there are four fields; ClaimId, UserId, ClaimType and
ClaimValue. The ClaimId is a unique identifier for the claim record. The UserId is a
foreign key relation to the User table. The value in the ClaimType field is the one
that is used in your Angular application to determine if the user has the appropriate
authorization to perform some action. The value in the ClaimValue can be any value
you want, I am using a "true" or "false" value for this blog.
You do not need to enter a record for a specific user and claim type if you do not
wish to give the user that claim. For example, the CanAddProduct property in the
authorization object may either be eliminated for the user "bjones", or you can enter
a "false" value for the ClaimValue field. Later in this blog, you learn how this
process works.

Figure 4: Example data in the UserClaim table.

Modify Web API Project
In the previous blog, the AppUserAuth class contained a Boolean property for each
claim. You tested this Boolean using an Angular *ngIf directive to remove HTML
elements from the DOM, thus eliminating the ability for a user to perform some
action. Now that you have database tables for your users and claims, you need to
modify a few things in the Web API application to support an array of claims.
Using individual properties for each claim makes your AppUserAuth class become
quite large and unmanageable when you have more than just a few claims. It also
means that when you wish to add another claim, you must add a new record to your

Modify Web API Project

Security in Angular 5
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

SQL Server, add a property to the AppUserAuth class in your Web API, add a
property to the AppUserAuth class in your Angular application, and add a directive
to any DOM element you wish to secure.
Using an array-based approach, you only need to add a record to your SQL Server
and add a directive to a DOM element you wish to secure. This means you have
less code to modify, less testing to perform, and thus, your time deploy a new
security change decreases.

Modify AppUserAuth Class
Open the AppUserAuth.cs file in the \PtcApi\Model folder and remove each of the
individual claim properties you created in the last blog. Add a generic list of
AppUserClaim objects with the property name of Claims. You need to add a using
statement to import the System.Collections.Generic namespace. You should also
initialize the Claims property to an empty list in the constructor of this class. After
making these changes, the AppUserAuth class should look like Listing 1.

using System.Collections.Generic;

namespace PtcApi.Model
{
 public class AppUserAuth
 {
 public AppUserAuth()
 {
 UserName = "Not authorized";
 BearerToken = string.Empty;
 Claims = new List<AppUserClaim>();
 }

 public string UserName { get; set; }
 public string BearerToken { get; set; }
 public bool IsAuthenticated { get; set; }
 public List<AppUserClaim> Claims { get; set; }
 }
}

Listing 1: Modify the AppUserAuth class to use an array of user claims.

Modify Security Manager
The SecurityManager.cs file, located in the \PtcApi\Model folder is responsible for
interacting with the Entity Framework to retrieve security information from your SQL
Server tables. Open the SecurityManager.cs file and remove the for loop in the
BuildUserAuthObject() method that uses reflection to set property names. The
following code snippet is what the BuildUserAuthObject() method should look like
after you have made these changes.

Security in Angular

6 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

protected AppUserAuth BuildUserAuthObject(AppUser authUser)
{
 AppUserAuth ret = new AppUserAuth();

 // Set User Properties
 ret.UserName = authUser.UserName;
 ret.IsAuthenticated = true;
 ret.BearerToken = BuildJwtToken(ret);

 // Get all claims for this user
 ret.Claims = GetUserClaims(authUser);

 return ret;
}

You also need to locate the BuildJWTToken() method and remove the individual
properties being set. Each line where these properties are being set should be
presenting a syntax error in Visual Studio code because those properties no longer
exist.

Modify the Angular Application
As is frequently the case with Angular applications, if you make changes in the Web
API project, you need to make changes in the Angular application as well. Let's
make those changes now.

Add a AppUserClaim Class
Since you are now going to be returning an array of AppUserClaim objects from the
Web API, you need a class named AppUserClaim in your Angular application.
Right mouse-click on the \security folder and add a new file named app-user-
claim.ts. Add the following code in this file.

export class AppUserClaim {
 claimId: string = "";
 userId: string = "";
 claimType: string = "";
 claimValue: string = "";
}

Modify the AppUserAuth Class
Open the app-user-auth.ts file and remove all the individual Boolean claim
properties. Just like you removed them from the Web API class, you need to

Claim Validation

Security in Angular 7
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

remove them from your Angular application as well. Next, add an array of
AppUserClaim objects to this class as shown in the following code snippet.

import { AppUserClaim } from "./app-user-claim";

export class AppUserAuth {
 userName: string = "";
 bearerToken: string = "";
 isAuthenticated: boolean = false;
 claims: AppUserClaim[] = [];
}

Modify Security Service
Open the security.service.ts file located in the \src\app\security folder. Locate the
resetSecurityObject() method and remove the individual Boolean properties. Add a
line of code to reset the claims array to an empty array of claims as shown in the
following code snippet.

resetSecurityObject(): void {
 this.securityObject.userName = "";
 this.securityObject.bearerToken = "";
 this.securityObject.isAuthenticated = false;

 this.securityObject.claims = [];

 localStorage.removeItem("bearerToken");
}

Claim Validation
Now that you have made code changes on both the server and client-side, the Web
API call returns the authorization class with an array of user claims. You now need
to be able to check if a user has a valid claim (authorization) to perform an action, or
to remove an HTML element from the DOM. You are eventually going to create a
custom structural directive that you can use on a menu as shown here.

<a routerLink="/products"
 *hasClaim="'canAccessProducts'">Products

To be able to do this, you need a method that takes the string passed to the
*hasClaim directive and verifies that this claim exists in the array downloaded from
the Web API. This method should also able to check for a claim value set with this
claim type. Remember the ClaimValue field in the SQL Server UserClaim table is of

Security in Angular

8 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

the type string. You can place any value you want into this field. This means you
also want to be able to pass in a value to check as shown here.

<a routerLink="/products"
 *hasClaim="'canAccessProducts:false'">Products

Notice the use of a colon, then the value you want to check for this claim. This string
containing the claim type, a colon, and the claim value is passed to the hasClaim
directive. The new method you are going to create should be able to parse this
string and determine the claim type and the value (if any). Add this new method to
the SecurityService class, and give it the name isClaimValid() as shown in Listing
2.

private isClaimValid(claimType: string) : boolean {
 let ret: boolean = false;
 let auth: AppUserAuth = null;
 let claimValue: string = '';

 // Retrieve security object
 auth = this.securityObject;
 if (auth) {
 // See if the claim type has a value
 // *hasClaim="'claimType:value'"
 if (claimType.indexOf(":") >= 0) {
 let words: string[] = claimType.split(":");
 claimType = words[0].toLowerCase();
 claimValue = words[1];
 }
 else {
 claimType = claimType.toLowerCase();
 // Either get the claim value, or assume 'true'
 claimValue = claimValue ? claimValue : "true";
 }
 // Attempt to find the claim
 ret = auth.claims.find(
 c => c.claimType.toLowerCase() == claimType
 && c.claimValue == claimValue) != null;
 }

 return ret;
}

Listing 2: Check for a claim type and optionally a claim value in the isClaimValid() method.

The isClaimValid is declared as a private method in the SecurityService class, so
you need a public method to call this one. Create a hasClaim() method that looks
like the following.

Claim Validation

Security in Angular 9
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

hasClaim(claimType: any) : boolean {
 return this.isClaimValid(claimType);
}

Create Structural Directive to Check Claim
To add your own structural directive, hasClaim, open a terminal window in VS Code
and type in the following Angular CLI command. This command adds a new
directive into the \security folder.

ng g d security/hasClaim --flat

Open the newly created has-claim.directive.ts file and modify the import statement
to add a few more classes.

import { Directive, Input, TemplateRef, ViewContainerRef }
 from '@angular/core';

Modify the selector property in the @Directive function to read hasClaim.

@Directive({ selector: '[hasClaim]' })

Modify the constructor to inject the TemplateRef, ViewContainerRef and the
SecurityService.

constructor(
 private templateRef: TemplateRef<any>,
 private viewContainer: ViewContainerRef,
 private securityService: SecurityService) { }

Just like when you bind properties from one element to another, you need to use
the Input class to tell Angular to pass the data on the right-hand side of the equal
sign in the directive to the hasClaim property in your directive class. Add the
following code below the constructor.

@Input() set hasClaim(claimType: any) {
 if (this.securityService.hasClaim(claimType)) {
 // Add template to DOM
 this.viewContainer.createEmbeddedView(this.templateRef);
 } else {
 // Remove template from DOM
 this.viewContainer.clear();
 }
}

Security in Angular

10 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

The @Input() decorator tells Angular to pass the value on the right-hand side of the
equals sign to the 'set' property named hasClaim(). The parameter to the hasClaim
property is named claimType. Pass this parameter to the new hasClaim() method
you created in the SecurityService class. If this method returns a true, which means
the claim exists, the UI element to which this directive is applied is displayed on the
screen using the createEmbeddedView() method. If the claim does not exist, the UI
element is removed by calling the clear() method on the viewContainer.

Modify Authorization Guard
Just because you remove a menu item does not mean that the user cannot directly
navigate to the path pointed to by the menu. In the first blog, you created an
Angular guard to stop a user from directly navigating to a route if they did not have
the appropriate claim. As you now verify claims using an array instead of Boolean
properties, you need to modify the authorization guard you created. Open the
auth.guard.ts file, locate the canActivate() method, and change the if statement to
look like the code shown below.

if (this.securityService.securityObject.isAuthenticated
 && this.securityService.hasClaim(claimName)) {
 return true;
}

Secure Menus
You are just about ready to try out all the changes you made. If you look at the
Products and Categories menu items in the app.component.html file you see that
you are using an *ngIf directive to only display menu items if the securityObject
property is not null, and that the Boolean property is set to a true value.

 <a routerLink="/products"
 *ngIf="securityObject.canAccessProducts">Products

 <a routerLink="/categories"
 *ngIf="securityObject.canAccessCategories">Categories

Since the *ngIf directive is bound to the securityObject using two-way data-binding if
this property changes, the menus are redrawn. The structural directive you just
created, however, passes in a string to a 'set' property that executes code, so there
is no binding to an actual property. This means that the menus are not be redrawn if
you add the *hasClaim structural as shown previously. Another problem is you can't

Secure Add New Product Button

Security in Angular 11
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

have two directives on a single HTML element. Not to worry, you may wrap the two
anchor tags within an ng-container and use the *ngIf directive on those to bind to
the isAuthenticated property of the securityObject. This property changes once a
user logs in, so this allows you to control the visibility of the menus. Then you may
use the *hasClaim on the anchor tags to control the visibility based on if the user's
claim is valid. Open the app.component.html file and modify the two menu items
as shown below.

 <ng-container *ngIf="securityObject.isAuthenticated">
 <a routerLink="/products"
 *hasClaim="'canAccessProducts'">Products
 </ng-container>

 <ng-container *ngIf="securityObject.isAuthenticated">
 <a routerLink="/categories"
 *hasClaim="'canAccessCategories'">Categories
 </ng-container>

Try it Out
You are finally ready to try out all your changes and verify your menu items are
turned off and on based on the user being authenticated, and they have the
appropriate claims in the UserClaim table. Save all the changes you have made in
VS Code. Start the Web API and Angular projects and view the browser. The
Products and Categories menus should not be visible. Click on the Login menu and
login using a user name of "psheriff" and a password of 'P@ssw0rd'. You should
now see both menus appear.
Open the User table, locate the "bjones" user and remember the UserId for this
user. Open the UserClaim table, locate the CanAccessCategories record for
"bjones", and change the value from a true to a false value. Back in the browser,
logout as "psheriff", and log back in as "bjones". You should see the Products
menu, but the Categories menu does not appear. Go back to the UserClaim table
and set the CanAccessCategories claim value field back to a true for "bjones".

Secure Add New Product Button
Add the *hasClaim directive to the "Add New Product" button located on the
product-list.component.html file. Remove the *ngIf directive that was bound to
the old canAddProduct property and use your new structural directive as shown in
the code below.

Security in Angular

12 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

<button class="btn btn-primary" (click)="addProduct()"
 *hasClaim="'canAddProduct'">
 Add New Product
</button>

Don't forget to add the single quotes inside the double quotes. If you forget them,
Angular is going to try to bind to a property in your component named
canAddProduct which does not exist.

Try it Out
Save all your changes and go back to the browser. Click on the Login menu and
login as "psheriff". Click on the Products menu and you should see the "Add New
Product" button appear. Logout as "psheriff" and login as "bjones". The "Add New
Product" button should now be gone.
Remember you added the capability to specify the claim value after the name of the
claim. Add a colon after the claim type, then add 'false' to the Add New Product
button as shown below.

<button class="btn btn-primary" (click)="addProduct()"
 *hasClaim="'canAddProduct:false'">
 Add New Product
</button>

If you now login as "psheriff", the Add New Product button is gone. Login as
"bjones" and it should appear. Remove the ":false" from the claim after you have
tested this out.

Add Multiple Claims
Sometimes your security requirements are such that you need to secure a UI
element using multiple claims. For example, you want to display a button for users
that have one claim type and other users that have another claim type. To
accomplish this, you need to pass an array of claims to the *hasClaim directive as
shown below.

*hasClaim="['canAddProduct', 'canAccessCategories']"

You need to modify the hasClaim() method in the SecurityService class to check to
see if a single string value, or an array is passed in. Open the security.service.ts
file and modify the hasClaim() method to look like Listing 3.

Add Multiple Claims

Security in Angular 13
Copyright © 2017-18 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

hasClaim(claimType: any) : boolean {
 let ret: boolean = false;

 // See if an array of values was passed in.
 if (typeof claimType === "string") {
 ret = this.isClaimValid(claimType);
 }
 else {
 let claims: string[] = claimType;
 if (claims) {
 for (let index = 0; index < claims.length; index++) {
 ret = this.isClaimValid(claims[index]);
 // If one is successful, then let them in
 if (ret) {
 break;
 }
 }
 }
 }

 return ret;
}

Listing 3: Add the ability to pass multiple claim types to the hasClaim directive.

As you now have two different data types that can be passed to the hasClaim()
method, use the typeof operator to check if the claimType parameter is a string. If it
is, call the isClaimValid() method passing in the two parameters. If it is not a string,
assume it is an array. Cast the claimType parameter into a string array named
claims. Verify it is an array, then loop through each element of the array and pass
each element to the isClaimValid() method. If even one claim matches, then return
a true from this method so the UI element is displayed.

Secure Other Buttons
Open the product-list.component.html file and modify the Add New Product
button to use an array as shown in the following code snippet.

*hasClaim="['canAddProduct', 'canAccessCategories']"

Try it Out
Save all the changes in your application and go back to your browser. Login as
"bjones" and because he has the canAccessCategories claim, he may view the
"Add New Product" button.

Security in Angular

14 Security in Angular
Copyright © 2017-18 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Summary
In this final blog on Angular security you learned to build a security system that is
more appropriate for enterprise type applications. Instead of individual properties for
each item you wish to secure, you return an array of claims from your Web API call.
You built a custom structural directive to which you may pass one or more claims.
This directive takes care of including or removing an HTML element based on the
users set of claims. This approach makes your code more flexible and requires less
coding changes should you wish to add or delete claims.

Sample Code
You can download the complete sample code at my website.
http://www.pdsa.com/downloads. Choose "PDSA/Fairway Blog", then "
Security in Angular - Part 3" from the drop-down.

http://www.pdsa.com/downloads

	Security in Angular - Part 3
	The Starting Application
	The PTC Database
	Security Tables Overview
	User Table
	User Claim Table

	Modify Web API Project
	Modify AppUserAuth Class
	Modify Security Manager

	Modify the Angular Application
	Add a AppUserClaim Class
	Modify the AppUserAuth Class
	Modify Security Service

	Claim Validation
	Create Structural Directive to Check Claim
	Modify Authorization Guard

	Secure Menus
	Try it Out

	Secure Add New Product Button
	Try it Out

	Add Multiple Claims
	Secure Other Buttons
	Try it Out

	Summary
	Sample Code

