
Getting Started with PouchDB -
Part 6

In the last several blog posts, you worked with a very flat document structure.
However, in a more real-world scenario you may have a more complicated JSON
object with several nested objects. Working with those types of objects requires you
to query and index data slightly differently. This blog posts shows you how to create
a complex document structure and query that data.

Document Structures
In this blog post you are going to add a series of Job and Invoice documents to your
PouchDB database. Each one of these contains properties to represent the data
required to describe the data. Some of these properties are themselves objects, and
some are arrays of objects. Let's look at each of these documents.
In this series of documents, add a prefix to the _id property of each document that
describes the type of the document. This helps you eliminate the need for a doctype
property and allows you to search on specific types of documents using the built-in
index on the _id property.

Job Document
A job document has some standard properties; _id, serviceDate and customer.
Notice that the _id property has a prefix of "job_" on it. This helps us to search for
just job documents using the built-in _id index. It has a technician property that is
another object that contains two other properties to describe an employee. The final
property, workDone, is an array of other objects to describe a one or more tasks
that were completed on this job.

Getting Started with PouchDB

2 Getting Started with PouchDB
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

{
 "_id": "job_2020",
 "serviceDate": "2018-02-03",
 "customer": "452",
 "technician": {
 "EmployeeID": "1034",
 "name": "Sheriff, Madison"
 },
 "workDone": [{
 "description": "Drywall installation",
 "price": 500
 },
 {
 "description": "Painting",
 "price": 100
 }]
}

Invoice Document
An invoice document contains a few standard properties; _id, invoiceDate and
invoiceTotal which are self-explanatory. Notice that the _id property has a prefix of
"invoice_" on it. This helps us to search for just invoice documents using the built-in
_id index. The customer property is another object that describes the customer for
whom the job was done. The lineItems property contains an array of items with a
link to a job documents' _id property, the description of the work done and the price
for that work.

Insert Sample Documents

Getting Started with PouchDB 3
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

{
 "_id": "invoice_2534",
 "invoiceDate": "2018-02-04",
 "invoiceTotal": 375,
 "customer": {
 "_id": "834",
 "name": "John Smith",
 "address": "123 Main Street",
 "city": "Nashville",
 "state": "TN",
 "postalCode": "37211"
 },
 "lineItems": [
 {
 "jobId": "job_2010",
 "description": "Driveway repair",
 "price": 225
 },
 {
 "jobId": "job_2011",
 "description": "Carport repair",
 "price": 150
 }
]
}

Insert Sample Documents
Create a set of job and invoice documents into the database so you can test
working with nested documents. Add the following function and call it to insert the
test documents.

Getting Started with PouchDB

4 Getting Started with PouchDB
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

function addMultipleDocs() {
 db.bulkDocs([
 {
 "_id": "job_2010",
 "serviceDate": "2018-02-03",
 "customer": "834",
 "technician": {
 "EmployeeID": "1023",
 "name": "Sheriff, Paul"
 },
 "workDone": [{
 "description": "Driveway repair",
 "price": 225
 }]
 },
 {
 "_id": "job_2011",
 "serviceDate": "2018-02-03",
 "customer": "834",
 "technician": {
 "EmployeeID": "1023",
 "name": "Sheriff, Paul"
 },
 "workDone": [{
 "description": "Carport repair",
 "price": 150
 }]
 },
 {
 "_id": "job_2020",
 "serviceDate": "2018-02-03",
 "customer": "452",
 "technician": {
 "EmployeeID": "1034",
 "name": "Sheriff, Madison"
 },
 "workDone": [{
 "description": "Drywall installation",
 "price": 500
 },
 {
 "description": "Painting",
 "price": 100
 }]
 },
 {
 "_id": "job_2030",
 "serviceDate": "2018-02-04",
 "customer": "651",
 "technician": {
 "EmployeeID": "1051",
 "name": "Jones, Bruce"
 },
 "workDone": [{
 "description": "Lawn mowing",
 "price": 100

Insert Sample Documents

Getting Started with PouchDB 5
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

 }]
 },
 {
 "_id": "job_2040",
 "serviceDate": "2018-03-05",
 "customer": "834",
 "technician": {
 "EmployeeID": "1189",
 "name": "Kuhn, John"
 },
 "workDone": [{
 "description": "Install doorbell",
 "price": 75
 }]
 },
 {
 "_id": "job_2050",
 "serviceDate": "2018-03-06",
 "customer": "983",
 "technician": {
 "EmployeeID": "1023",
 "name": "Sheriff, Paul"
 },
 "workDone": [{
 "description": "Drywall repair",
 "price": 95
 },
 {
 "description": "Painting",
 "price": 50
 }]
 },
 {
 "_id": "job_2060",
 "serviceDate": "2018-04-08",
 "customer": "389",
 "technician": {
 "EmployeeID": "1189",
 "name": "Kuhn, John"
 },
 "workDone": [{
 "description": "Ceiling fan install",
 "price": 150
 }]
 },
 {
 "_id": "invoice_2534",
 "invoiceDate": "2018-02-04",
 "invoiceTotal": 375,
 "customer": {
 "_id": "834",
 "name": "John Smith",
 "address": "123 Main Street",
 "city": "Nashville",
 "state": "TN",
 "postalCode": "37211"
 },

Getting Started with PouchDB

6 Getting Started with PouchDB
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

 "lineItems": [
 {
 "jobId": "job_2010",
 "description": "Driveway repair",
 "price": 225
 },
 {
 "jobId": "job_2011",
 "description": "Carport repair",
 "price": 150
 }
]
 },
 {
 "_id": "invoice_2536",
 "invoiceDate": "2018-02-04",
 "invoiceTotal": 600,
 "customer": {
 "_id": "452",
 "name": "Henry James",
 "address": "98 5th Ave",
 "city": "Brentwood",
 "state": "TN",
 "postalCode": "37027"
 },
 "lineItems": [
 {
 "jobId": "job_2020",
 "description": "Drywall installation",
 "price": 500
 },
 {
 "jobId": "job_2020",
 "description": "Painting",
 "price": 100
 }
]
 },
 {
 "_id": "invoice_2537",
 "invoiceDate": "2018-02-05",
 "invoiceTotal": 100,
 "customer": {
 "_id": "651",
 "name": "Grant Able",
 "address": "113 Woods Lane",
 "city": "Brentwood",
 "state": "TN",
 "postalCode": "37027"
 },
 "lineItems": [
 {
 "jobId": "job_2030",
 "description": "Lawn mowing",
 "price": 100
 }
]

Insert Sample Documents

Getting Started with PouchDB 7
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

 },
 {
 "_id": "invoice_2538",
 "invoiceDate": "2018-03-06",
 "invoiceTotal": 75,
 "customer": {
 "_id": "843",
 "name": "John Smith",
 "address": "123 Main Street",
 "city": "Nashville",
 "state": "TN",
 "postalCode": "37211"
 },
 "lineItems": [
 {
 "jobId": "job_2040",
 "description": "Install doorbell",
 "price": 75
 }
]
 },
 {
 "_id": "invoice_2539",
 "invoiceDate": "2018-03-07",
 "invoiceTotal": 145,
 "customer": {
 "_id": "983",
 "name": "Mike Tinder",
 "address": "8733 Mockingbird Street",
 "city": "Franklin",
 "state": "TN",
 "postalCode": "37064"
 },
 "lineItems": [
 {
 "jobId": "job_2050",
 "description": "Drywall Repair",
 "price": 95
 },
 {
 "jobId": "job_2050",
 "description": "Painting",
 "price": 50
 }
]
 },
 {
 "_id": "invoice_2540",
 "invoiceDate": "2018-02-06",
 "invoiceTotal": 150,
 "customer": {
 "_id": "389",
 "name": "Sally Sherland",
 "address": "11 14th Avenue",
 "city": "Nashville",
 "state": "TN",
 "postalCode": "37211"

Getting Started with PouchDB

8 Getting Started with PouchDB
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

 },
 "lineItems": [
 {
 "jobId": "job_2060",
 "description": "Ceiling fan install",
 "price": 150
 }
]
 }
]).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 pouchDBSamplesCommon.displayMessage("Multiple documents
added.");
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

Working with Intelligent ID's
As you can see from the sample data you just entered, each _id property has a
prefix that describes the type of document. After the prefix is a unique job id or
unique invoice id. Adding a prefix to the _id property helps us with searching as
shown in the next two samples.

Retrieve Job Documents
An advantage of creating an "intelligent _id" property is it allows you to retrieve
documents using the built-in index on the _id property. For example, to retrieve all
job documents, simply specify the startkey and endkey properties as follows.

function getAllJobs() {
 db.allDocs({
 startkey: 'job_',
 endkey: 'job_\ufff0',
 include_docs: true
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

Retrieve Invoice Documents
To retrieve just the invoice documents, you can use the startkey and endkey
properties as shown below.

Working with Intelligent ID's

Getting Started with PouchDB 9
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

function getAllInvoices() {
 pouchDBSamplesCommon.hideMessageAreas();
 db.allDocs({
 startkey: 'invoice_',
 endkey: 'invoice_\ufff0',
 include_docs: true
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

Other Examples of Intelligent ID's
You can do quite a bit with the _id property. For example, if you frequently look up
jobs by date, add the service date to the _id property in each job document. Here
are some examples:

"id": "Job_2018_02_03_2010"
"id": "Job_2018_02_03_2011"
"id": "Job_2018_03_05_2040"
"id": "Job_2018_04_08_2060"

You may now use the startkey and endkey to search for all jobs within a year.

{
 startkey: 'job_2018',
 endkey: 'job_2018\ufff0'
}

Or, you can search for a specific month using the following values.

{
 startkey: 'job_2018_03',
 endkey: 'job_2018_03\ufff0'
}

The point here is to use your _id property intelligently so you can use the built-in
index on the _id property and avoid creating additional indexes.

Getting Started with PouchDB

10 Getting Started with PouchDB
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Locate Customer by Name
When you have a property that contains another object, you need to use the dot
notation when creating the fields for your index. The code below shows creating an
index based on the customer.name property. This tells PouchDB to locate a
customer property, and to further locate within that property a property called name.

db.createIndex({
 index: {
 fields: ['customer.name']
 }
}).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
}).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
});

To locate a specific customer's name, you use the dot notation in the selector
property of the options object you pass to the find() method as shown below.

function getCustomer() {
 let search = "Mike Tinder";

 db.find({
 selector: { "customer.name": search }
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

Price Greater than 150
If a property of your document contains an array of other objects, you can't create
an index on a property of the objects within the array. You may still use the find()
method to perform this search, but it is going to perform a complete scan of all
documents. The following code using the $elemMatch selector operator to find an
element with a property called price. It then searches for where any price value is
greater than 150.

Create Design Document

Getting Started with PouchDB 11
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

function getWorkDonePrice() {
 let search = 150;

 pouchDBSamplesCommon.hideMessageAreas();
 db.find({
 selector: {
 "workDone": {
 "$elemMatch": { "price": { $gt: search } }
 }
 }
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

Create Design Document
The find() method works for properties that contain objects, but does not work so
well for properties that are arrays of objects. As you have seen in a previous blog
post, you may create a design document using a map() function to create a
secondary index. This is the most efficient way to search for data within an array of
objects.
The code highlighted in the following listing shows the declaration of two views, The
first view looks at each document for a customer property that is an object and has
a name property. If it finds a document, it calls the emit() function to emit the
customer.name value into the index.
The second view looks at each document for a lineItems property. The lineItems
array is then looped through and emits the price of each object. In this way an index
of all price values is created and is ready to be searched.

Getting Started with PouchDB

12 Getting Started with PouchDB
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

function createDesignDoc() {
 pouchDBSamplesCommon.hideMessageAreas();
 // First check to see if the design document exists
 db.get("_design/allQueries")
 .then(function (doc) {
 pouchDBSamplesCommon.displayMessage("Design document: '" +
doc._id + "' already exists.");
 }).catch(function (err) {
 if (err.status == 404) {
 var ddoc = {
 _id: '_design/allQueries',
 views: {
 byCustomerName: {
 map: function (doc) {
 if (doc.customer.name) {
 emit(doc.customer.name);
 }
 }.toString()
 },
 byPrice: {
 map: function (doc) {
 if (doc.lineItems) {
 for (var i = 0; i < doc.lineItems.length; i++) {
 emit(doc.lineItems[i].price);
 }
 }
 }.toString()
 }
 }
 };
 // Save the design document
 db.put(ddoc).then(function (response) {
 // Successfully added
 pouchDBSamplesCommon.displayMessage("Design document
created successfully.");
 pouchDBSamplesCommon.displayJSON(response);

 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
 }
 else {
 pouchDBSamplesCommon.displayMessage(err);
 }
 });
}

Find Customer by Name
Create a function that calls the query() method and passes in the name of the
design document followed by the view name. The second parameter to the query()
method is an options object on which you add the startkey and endkey properties of
the value(s) you wish to locate.

Summary

Getting Started with PouchDB 13
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

function getCustomer() {
 pouchDBSamplesCommon.hideMessageAreas();
 db.query("allQueries/byCustomerName",
 {
 startkey: 'John Smith',
 endkey: 'John Smith\ufff0',
 include_docs: true
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

Find Price
To search for a range of prices, you take advantage of the byPrice view you created
in the design document. Call the query() method using the byPrice view and pass in
the startkey and endkey with the specific values you wish to search for. In the code
below, you want to return all documents that have a price between 50 and 100.

function getByPrice() {
 pouchDBSamplesCommon.hideMessageAreas();
 db.query("allQueries/byPrice",
 {
 startkey: 50,
 endkey: 100,
 include_docs: true
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

Summary
In this blog post you learned to work with documents that contain nested objects
and arrays. There are just a couple of things you need to do differently to search for
data within these nested objects or arrays. You also learned how to use your _id
property intelligently to take advantage of the built-in index on the _id property.

Getting Started with PouchDB

14 Getting Started with PouchDB
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Sample Code
You can download the complete sample code at my website.
http://www.pdsa.com/downloads. Choose "PDSA/Fairway Blog", then "Getting
Started with PouchDB - Part 6" from the drop-down.

http://www.pdsa.com/downloads

	Getting Started with PouchDB - Part 6
	Document Structures
	Job Document
	Invoice Document

	Insert Sample Documents
	Working with Intelligent ID's
	Retrieve Job Documents
	Retrieve Invoice Documents
	Other Examples of Intelligent ID's

	Locate Customer by Name
	Price Greater than 150
	Create Design Document
	Find Customer by Name
	Find Price

	Summary
	Sample Code

