

Using MVVM in MVC Applications – Part
4

This blog post continues from the last two blog posts that you can find here.

• BLOG POST 1

• BLOG POST 2

• BLOG POST 3
This post is going to finish the MVC application using a MVVM approach. You
are going to build the methods to select a single product from the product
table. You are going to learn to update an existing product. You are also
going to delete a product. Finally you learn how to handle server-side
validation, and return validation messages back to the client to display to the
user.

Get a Single Product
Prior to updating a record, you should go back to the table and retrieve the
most current information. To do this, you require the primary key of the
product record. This means you need to create a new property in your
ProductViewModel class to hold this data. You also need to put the primary
key value into a data- attribute, then take that value and place it into a hidden
field on your page so it can be bound to the view model.
Open ProductViewModel and add a new property named EventArgument. It is
in this property you are going to place the primary key value.

public string EventArgument { get; set; }

Modify the Init() method to initialize this property.

EventArgument = string.Empty;

Open the _ProductList.cshtml page

Using MVVM in MVC Applications

2 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Add a new column header before all the other column headers in the <thead>
area.

<th>Edit</th>

Now add a new column within the @foreach() loop.

<td>
 <a href="#"
 data-pdsa-action="edit"
 data-pdsa-arg="@item.ProductId"
 class="btn btn-default btn-sm">
 <i class="glyphicon glyphicon-edit"></i>

</td>

Notice the new data-pdsa-arg attribute. This attribute’s value is filled in with
the primary key of the table. You need to store this value into the
EventArgument property you just added to the view model class. Open the
Product.cshtml page and add a new hidden field below the EventAction
hidden field.

@Html.HiddenFor(m => m.EventArgument,
 new { data_val = "false" })

To add the product id to the EventArgument hidden field, open the pdsa-
action.js script file and add the following line.

$("#EventArgument").val($(this).data("pdsa-arg"));

If you ran the application right now and clicked on one of the edit buttons you
would see that the EventArgument property of the view model is filled in.

Write GetEntity Method
Before you update a product, it is a good idea to retrieve the complete record
from the table to ensure you have the latest values. Write a GetEntity method
to use the EventArgument and set the Entity property with the Product
returned from the Find method of the Products collection.

Update the Product

Using MVVM in MVC Applications 3
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

protected virtual void GetEntity() {
 PTCData db = null;

 try {
 db = new PTCData();

 // Get the entity
 if (!string.IsNullOrEmpty(EventArgument)) {
 Entity =
 db.Products.Find(Convert.ToInt32(EventArgument));
 }
 }
 catch (Exception ex) {
 Publish(ex, "Error Retrieving Product With ID="
 + EventArgument);
 }
}

Now modify the “edit” case statement in the HandleRequest to call this new
method.

case "edit":
 IsValid = true;
 PageMode = PDSAPageModeEnum.Edit;
 GetEntity();
 break;

Once the Entity property is set, you display the product detail page and the
data from the item selected in the list is displayed in the fields. Run the page
right now and verify that you are retrieving the correct product and displaying
that product in the fields on the detail page.

Update the Product
Now that you have retrieved a product from the database and displayed it on
the detail page, let’s save changes back to the Product table. Add a using
statement at the top of the ProductViewModel class. You need this
namespace so you have access to the DbEntityValidationException class.

using System.Data.Entity;

Modify the Update method in the ProductViewModel class to look like the
following:

Using MVVM in MVC Applications

4 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

protected void Update() {
 PTCData db = null;

 try {
 db = new PTCData();

 // Do editing here
 db.Entry(Entity).State = EntityState.Modified;
 db.SaveChanges();

 PageMode = PDSAPageModeEnum.List;
 }
 catch (DbEntityValidationException ex) {
 IsValid = false;
 ValidationErrorsToMessages(ex);
 }
 catch (Exception ex) {
 Publish(ex, "Error Updating Product With ID="
 + Entity.ProductId.ToString());
 }
}

Run the product page and change some of the product data. Press the Save
button and you should see the list refreshed with the changes you made to
the one record.

Delete a Product
Now that you have added and updated a product, you should now allow the
user to delete a product. To delete a product, add a button to the HTML table
next to each product. Open the _ProductList.html page and add a new
column header in the <thead> area.

<th>Delete</th>

Next, add a column as the last column within the @foreach() statement.

Delete a Product

Using MVVM in MVC Applications 5
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

<td>
 <a href="#"
 data-pdsa-action="delete"
 data-pdsa-arg="@item.ProductId"
 data-pdsa-deletelabel="Product"
 class="btn btn-default btn-sm">
 <i class="glyphicon glyphicon-trash"></i>

</td>

Again, you are going to use the data-pdsa-arg attribute to hold the primary
key of the product record to delete. There is also one additional data- attribute
called data-pdsa-deletelabel. This allows you to pass in the text to display
when the JavaScript confirm() function is called to ask the user if they wish to
“Delete this Product?”. The value Product is what is replaced in the string.
Modify the pdsa-action.js file to display a “Delete” message to the user.

$(document).ready(function () {
 // Connect to any elements that have 'data-pdsa-action'
 $("[data-pdsa-action]").on("click", function (e) {
 var deletelabel = '';
 var submit = true;
 e.preventDefault();

 // Check for Delete
 if ($(this).data("pdsa-action") === "delete") {
 deletelabel = $(this).data("pdsa-deletelabel");
 if (!deletelabel) {
 deletelabel = 'Record';
 }
 if (!confirm("Delete this " + deletelabel + "?")) {
 submit = false;
 }
 }

 // Fill in hidden fields with action
 // and argument to post back to model
 $("#EventAction").val($(this).data("pdsa-action"));
 $("#EventArgument").val($(this).data("pdsa-arg"));

 if (submit) {
 // Submit form with hidden values filled in
 $("form").submit();
 }
 });
});

Open the ProductViewModel class and add a new method to delete a
product.

Using MVVM in MVC Applications

6 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

public virtual void Delete() {
 PTCData db = null;

 try {
 db = new PTCData();

 if (!string.IsNullOrEmpty(EventArgument)) {
 Entity =
 db.Products.Find(Convert.ToInt32(EventArgument));

 db.Products.Remove(Entity);
 db.SaveChanges();

 PageMode = PDSAPageModeEnum.List;
 }
 }
 catch (Exception ex) {
 Publish(ex, "Error Deleting Product With ID="
 + Entity.ProductName);
 }
}

Add a new case statement in the HandleRequest for deleting a product.

case "delete":
 Delete();
 break;

Run the Product page, click on a product, answer OK when prompted, and
you should see the product table refreshed with the product you deleted no
longer displayed.

Add Server-Side Validation
Now that you have all the client-side validation working, add similar
functionality to the server-side code as well. As it is very simple for a hacker
to bypass client-side validation, you always check to ensure the data is
validated on the server-side as well. To do this you add a new class to the
DataLayer project named PTCData-Extension. After the file is added,
rename the class inside of the file to PTCData and make it a partial class.
This will allow us to add additional functionality to the PTC Entity Framework
model created in part two of this blog post series.

Add Server-Side Validation

Using MVVM in MVC Applications 7
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

public partial class PTC
{

}

When you attempt to insert or update data using the Entity Framework, it first
calls a method named ValidateEntity to perform the validation on any data
annotations added to each property. You may override this method to add
your own custom validations. Add the following code to the PTC class in the
PTC-Extension.cs file you just added.

protected override DbEntityValidationResult
 ValidateEntity(DbEntityEntry entityEntry,
 IDictionary<object, object> items) {

 return base.ValidateEntity(entityEntry, items);
}

Add a new method named ValidateProduct just after the ValidateEntity
method you added. In this method is where you add your own custom
validations. You return a list of DbValidationError objects for each validation
that fails.

protected List<DbValidationError>
 ValidateProduct(Product entity) {
 List<DbValidationError> list =
 new List<DbValidationError>();

 return list;
}

The ValidateEntity method is called once for each entity class in your model
that you are trying to validate. In our example, you are only validating the
Product object since that is what the user is inputting. The entityEntry
parameter passed into this method has an Entity property which contains the
current entity being validated. Write code to check to see if that property is a
Product object. If it is, pass that object to the ValidateProduct method. The
ValidateProduct method returns a list of additional DbValidationError objects
that need to be returned. If the list count is greater than zero, then return a
new DbEntityValidationResult object by passing in the entityEntry property
and your new list of DbValidationError objects.

Using MVVM in MVC Applications

8 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

protected override DbEntityValidationResult ValidateEntity(
 DbEntityEntry entityEntry,
 IDictionary<object, object> items) {
 List<DbValidationError> list =
 new List<DbValidationError>();

 if (entityEntry.Entity is Product) {
 Product entity = entityEntry.Entity as Product;

 list = ValidateProduct(entity);

 if (list.Count > 0) {
 return new DbEntityValidationResult(entityEntry, list);
 }
 }

 return base.ValidateEntity(entityEntry, items);
}

Now write the ValidateProduct method to perform the various validations for
your Product data. Check the same validations you performed on the client-
side.

Add Server-Side Validation

Using MVVM in MVC Applications 9
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

protected List<DbValidationError> ValidateProduct(
 Product entity) {
 List<DbValidationError> list =
 new List<DbValidationError>();

 // Check ProductName field
 if (string.IsNullOrEmpty(entity.ProductName)) {
 list.Add(new DbValidationError("ProductName",
 "Product Name must be filled in."));
 }
 else {
 if (entity.ProductName.ToLower() ==
 entity.ProductName) {
 list.Add(new DbValidationError("ProductName",
 "Product Name must not be all lower case."));
 }
 if (entity.ProductName.Length < 4 ||
 entity.ProductName.Length > 150) {
 list.Add(new DbValidationError("ProductName",
 "Product Name must have between 4 and 150
 characters."));
 }
 }

 // Check IntroductionDate field
 if (entity.IntroductionDate < DateTime.Now.AddYears(-2)) {
 list.Add(new DbValidationError("IntroductionDate",
 "Introduction date must be within the
 last two years."));
 }

 // Check Price field
 if (entity.Price < Convert.ToDecimal(0.1) ||
 entity.Price.Value > Convert.ToDecimal(9999.99)) {
 list.Add(new DbValidationError("Price",
 "Price must be between $0.1 and
 less than $9,999.99."));
 }

 // Check Url field
 if (string.IsNullOrEmpty(entity.Url)) {
 list.Add(new DbValidationError("Url",
 "Url must be filled in."));
 }
 else {
 if (entity.Url.Length < 5 ||
 entity.Url.Length > 255) {
 list.Add(new DbValidationError("Url",
 "Url must have between 5 and 255 characters."));
 }
 }

 return list;
}

Using MVVM in MVC Applications

10 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Run the Product page and try putting in some values that are outside the
ranges specified in this method and watch the messages displayed.

Summary
In this series of blog posts you learned techniques for using the Model-View-
View-Model design pattern in the context of an MVC application. There are
many advantages to using MVVM in an MVC application as you saw. By
using these techniques, you should find yourself writing more reusable code
and code that can be tested much easier.

Sample Code
You can download the code for this sample at www.pdsa.com/downloads.
Choose the category “PDSA Blogs”, then locate the sample Using MVVM in
MVC Applications.

http://www.pdsa.com/downloads

	Using MVVM in MVC Applications – Part 4
	Get a Single Product
	Write GetEntity Method

	Update the Product
	Delete a Product
	Add Server-Side Validation
	Summary
	Sample Code

