

Using MVVM in MVC Applications – Part
3

This blog post continues from the last two blog posts that you can find here.

• BLOG POST 1

• BLOG POST 2
In this post you add a product detail page in order to gather product data for
adding to the product table. You add a save and a cancel button and learn to
display validation messages. You build a method in the view model class to
insert product data.

Add a Product
To add or update a product, you need to create a detail page (Figure 21) with
data entry fields for each field in the table. You need to be able to display
validation errors if the user does not fill out correct data for the fields. You
also need to hide the Search and List areas of the screen while the user is in
add or edit mode.
Create an enumeration that can help you keep track of what “mode” the page
is in. There are three different modes; List, Add, and Edit. So, you need three
enumerated values. Add a file in your PTC.ViewModelLayer project called
PDSAPageModeEnum.cs. Remove any code in this file and replace it with
the following enum definition.

public enum PDSAPageModeEnum
{
 List,
 Add,
 Edit
}

Open the ProductViewModel class and add a new property called PageMode
that is of the type of this enumeration. Also, add a property called Entity, of

Using MVVM in MVC Applications

2 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

the type Product, that you can use to bind to the fields on the detail page.
One more property you need is a boolean called IsValid. This property
informs the page to display any validation errors.

public PDSAPageModeEnum PageMode { get; set; }
public Product Entity { get; set; }
public bool IsValid { get; set; }

Modify the Init() method to initialize these three new properties.

PageMode = PDSAPageModeEnum.List;
Entity = new Product();
IsValid = true;

Modify the HandleRequest method and add two new case statements. You
also need to set the PageMode to List within the other case statements.

Add a Product

Using MVVM in MVC Applications 3
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

public void HandleRequest() {
 // Make sure we have a valid event command
 EventAction = (EventAction == null ? "" :
 EventAction.ToLower());

 Message = string.Empty;
 switch (EventAction) {
 case "add":
 IsValid = true;
 PageMode = PDSAPageModeEnum.Add;
 break;

 case "edit":
 IsValid = true;
 PageMode = PDSAPageModeEnum.Edit;
 break;

 case "search":
 PageMode = PDSAPageModeEnum.List;
 break;

 case "resetsearch":
 PageMode = PDSAPageModeEnum.List;
 SearchEntity = new ProductSearch();
 break;
 }

 if (PageMode == PDSAPageModeEnum.List) {
 BuildCollection();
 if (DataCollection.Count == 0) {
 Message = "No Product Data Found.";
 }
 }
}

You need a way for the user to go into Add or Edit mode. Start with the Add
mode by adding an Add button to the search panel as shown in Figure 20.

Using MVVM in MVC Applications

4 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 1: An Add button allows you to navigate to a blank detail page

Open the _ProductSearch.cshtml file and locate the Reset button. Just below
this button add an addition button for the Add.

<button id="btnAdd"
 class="btn btn-sm btn-primary"
 data-pdsa-action="add">
 <i class="glyphicon glyphicon-plus"></i>
 Add
</button>

With just this line of code above, you can run the application and if you were
to set a breakpoint on the line in the HandleRequest method that sets the
PageMode = PDSAPageModeEnum.Add; you would see that you stop on that
line. This is a nice feature of using the data-pdsa-action attribute, you simply
add a new data-pdsa-action=”some value” and the HandleRequest method is
called with the appropriate value set in the EventAction. You just need to add
additional case statements to handle the new actions you wish to work with.

Build the Detail Page
It is now time to build the Product data entry page. Add a new partial page in
the \Product folder named _ProductDetail.cshtml. Add the following HTML
to create the page shown in Figure 21.

Add a Product

Using MVVM in MVC Applications 5
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

@model PTC.ViewModelLayer.ProductViewModel

<div class="panel panel-primary">
 <div class="panel-heading">
 <h1 class="panel-title">
 Product Information
 </h1>
 </div>
 <div class="panel-body">
 <!-- ** BEGIN MESSAGE AREA -->
 <div class="row">
 <div class="col-xs-12">
 @if (!Model.IsValid) {
 <div class="alert alert-danger
 alert-dismissable"
 role="alert">
 <button type="button" class="close"
 data-dismiss="alert">

 ×

 Close
 </button>
 <!-- Model State Errors -->
 @Html.ValidationSummary(false)
 </div>
 }
 </div>
 </div>
 <!-- ** END MESSAGE AREA -->
 <!-- ** BEGIN INPUT AREA -->
 @Html.HiddenFor(m => m.Entity.ProductId)

 <div class="form-group">
 @Html.LabelFor(m => m.Entity.ProductName,
 "Product Name")
 @Html.TextBoxFor(m => m.Entity.ProductName,
 new { @class = "form-control" })
 </div>
 <div class="form-group">
 @Html.LabelFor(m =>
 m.Entity.IntroductionDate,
 "Introduction Date")
 @Html.TextBoxFor(m =>
 m.Entity.IntroductionDate,
 new { @class = "form-control" })
 </div>
 <div class="form-group">
 @Html.LabelFor(m => m.Entity.Url, "Url")
 @Html.TextBoxFor(m => m.Entity.Url,
 new { @class = "form-control" })
 </div>
 <div class="form-group">
 @Html.LabelFor(m => m.Entity.Price, "Price")
 @Html.TextBoxFor(m => m.Entity.Price,
 new { @class = "form-control" })

Using MVVM in MVC Applications

6 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

 </div>
 <!-- ** END INPUT AREA -->
 </div>
 <div class="panel-footer">
 <div class="row">
 <div class="col-sm-12">
 <button id="btnSave"
 class="btn btn-sm btn-primary"
 data-pdsa-action="save">
 <i class="glyphicon
 glyphicon-floppy-disk"></i>
 Save
 </button>
 <button id="btnCancel"
 class="btn btn-sm btn-primary"
 formnovalidate="formnovalidate"
 data-pdsa-action="cancel">
 <i class="glyphicon
 glyphicon-remove-circle"></i>
 Cancel
 </button>
 </div>
 </div>
 </div>
</div>

Open the Product.cshtml page and modify the code in the @using
(Html.BeginForm()) area. You are going to add a new hidden field to hold the
current state of the PageMode property. You are also going to wrap an if
statement around the rendering of the partial pages. You want to display the
pages based on the mode of the view model.

@using (Html.BeginForm()) {
 @Html.HiddenFor(m => m.EventAction,
 new { data_val = "false" })
 @Html.HiddenFor(m => m.PageMode,
 new { data_val = "false" })

 if (Model.PageMode == PDSAPageModeEnum.List)
 {
 @Html.Partial("_ProductSearch", Model)
 @Html.Partial("_ProductList", Model)
 }

 if (Model.PageMode == PDSAPageModeEnum.Add ||
 Model.PageMode == PDSAPageModeEnum.Edit) {
 @Html.Partial("_ProductDetail", Model)
 }
}

You should be able to run the page, click on the Add button and you see the
product detail page appear. You can’t click on the Save or Cancel buttons as
you have not programmed those yet.

Add a Product

Using MVVM in MVC Applications 7
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

Figure 2: The detail page for inserting or updating a product

Cancel Button
First create the logic in your view model class to handle the user pressing the
Cancel button on the detail page. Open the ProductViewModel class and add
a new case statement as shown below.

case "cancel":
 PageMode = PDSAPageModeEnum.List;
 break;

Just these three lines of code will cause the page to go back into List mode,
rebuild the collection of products and display the HTML table of products. Run
the application, click on the Add button, then click on the Cancel button, and
you should be able to cancel out of the detail screen.

Using MVVM in MVC Applications

8 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Save Button
When the user clicks on the Save button, you are going to either Insert or
Update the product data depending on how the user navigated to the detail
page. You have only created the Add button so far, but later you will build the
edit functionality. To prepare for both inserting and updating of product data,
add some method stubs to your ProductViewModel class as shown below.

protected void Insert() {

}

protected void Update() {

}

protected void Save() {
 IsValid = true;

 if (PageMode == PDSAPageModeEnum.Add) {
 Insert();
 }
 else {
 Update();
 }
}

Locate the HandleRequest() method and add a new case statement to handle
the “save” event action.

case "save":
 Save();
 break;

Validation Messages
When you attempt to insert or update, the user may not put in good
information and thus some validation rules may fail. You need to report those
errors back to the user. Earlier you added the @Html.ValidationSummary()
method to generate any validation rule failures from Data Annotations
generated by the Entity Framework. However, these will only display if
JavaScript is turned on in the user’s browser. And, of course, hackers can
bypass these rules easily.
You also need to test business rules on the server-side in case things are
bypassed, and because we can write more rules that are not able to be added
as Data Annotations at the time of generation. To handle these situations, you
are going to add a property to your ProductViewModel class to hold a

Add a Product

Using MVVM in MVC Applications 9
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

collection of string messages. This collection can be displayed on the
_ProductDetail.cshtml page.
At the top of the ProductViewModel class add a new using statement. This
statement is needed as you are going to work with some objects from the
Entity Framework namespace.

using System.Data.Entity.Validation;

Create a property named Messages to hold a collection of messages to
display to the user.

public List<string> Messages { get; set; }

Modify the Init() method to initialize this new collection.

Messages = new List<string>();

Add a method to add the failures contained in a DbValidationException object
to the Messages collection. This exception object is thrown by the Entity
Framework if any validation rules fail. You will learn how a little later. For now,
write the following method.

protected void ValidationErrorsToMessages(
 DbEntityValidationException ex) {
 foreach (DbEntityValidationResult result in
 ex.EntityValidationErrors) {
 foreach (DbValidationError item in
 result.ValidationErrors) {
 Messages.Add(item.ErrorMessage);
 }
 }
}

To display these messages, or any single message, open the
_ProductDetail.cshtml page and right below the
@Html.ValidationSummary(false) line add the following code.

Using MVVM in MVC Applications

10 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

@if (Model.Messages.Count > 0) {

 @foreach (string item in Model.Messages) {
 @item
 }

}
else {
 @Html.Raw(Model.Message)
}

Insert Method
It is now time to write the code to perform the insert into the Product table.
Locate the Insert() method in your ProductViewModel class and add the
following code.

protected void Insert() {
 PTCData db = null;

 try {
 db = new PTCData();

 // Do editing here
 db.Products.Add(Entity);
 db.SaveChanges();

 PageMode = PDSAPageModeEnum.List;
 }
 catch (DbEntityValidationException ex) {
 IsValid = false;
 ValidationErrorsToMessages(ex);
 }
 catch (Exception ex) {
 Publish(ex, "Error Inserting New Product: '"
 + Entity.ProductName + "'");
 }
}

When the SaveChanges() method is executed, validation errors could occur
here. This is when the catch block that accepts a DbEntityValidationException
would execute. You then take that exception object and pass it to the
ValidationErrorsToMessages method to extract the message and put it into
the Messages property. These messages would then be displayed in the
message area of the detail page.

Summary

Using MVVM in MVC Applications 11
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

Modify the Post Method in the Product
Controller
Now that you are going to handle any validation errors, you want to first check
to see if the ModelState property is valid. This value is automatically checked
by MVC for any Data Annotations that generated validation rules to be
checked. Modify the POST method in the ProductController to look like the
following.

[HttpPost]
public ActionResult Product(ProductViewModel vm) {
 vm.IsValid = ModelState.IsValid;

 if (ModelState.IsValid) {
 // Handle action by user
 vm.HandleRequest();

 // Rebind controls
 ModelState.Clear();
 }

 return View(vm);
}

Run the application and click on the Add button. Immediately click on the
Save button without filling any information into the page, and you should see
an error message appear. Now fill in some good product information and
press the Save button. You should see the new information show up in the
list.

Summary
In this post, you added a product detail page to gather product data from the
user. You learned how to display validation messages if the data was not
input correctly. In addition, you added an insert method to the view model
class in order to add data to the product table. In the next post you write code
to select a single product from the product table. You also learn to update and
delete product data.

Using MVVM in MVC Applications

12 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Sample Code
You can download the code for this sample at www.pdsa.com/downloads.
Choose the category “PDSA Blogs”, then locate the sample Using MVVM in
MVC Applications.

http://www.pdsa.com/downloads

	Using MVVM in MVC Applications – Part 3
	Add a Product
	Build the Detail Page
	Cancel Button
	Save Button
	Validation Messages
	Insert Method
	Modify the Post Method in the Product Controller

	Summary
	Sample Code

