

Using MVVM in MVC Applications – Part
2

This blog post continues from where the last blog post left off. You are going
to learn to search for products. You also learn how to handle all post backs
through a single method in your MVC controller. You will add code to check
for no rows being returned, and display a message to the user. Finally you
break up the single page into multiple partial pages.

Search for Products
You are now going to add a text box to allow the user to fill in a partial product
name to search on. You are going to add two new buttons; one to allow the
user to search on the product name they fill in, and one to clear the product
name text box as shown in Figure 19.

Using MVVM in MVC Applications

2 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 1: Add a search area for your product page

To start out, you need a class to hold the search data. Currently there is only
the one search field, Product Name, but you might add additional ones later.
This means you only need to add one property to this new class.
Go to PTC.DataLayer project and add a new folder called \EntityClasses. Add
a new class called ProductSearch under the \EntityClasses folder. Write the
following code in this class.

public class ProductSearch
{
 public ProductSearch() : base() {
 Init();
 }

 public void Init() {
 // Initialize all search variables
 ProductName = string.Empty;
 }

 public string ProductName { get; set; }
}

Go to the PTC.ViewModelLayer project and open the ProductViewModel
class. Add a using statement at the top of this class so you can use the new
ProductSearch class.

Search for Products

Using MVVM in MVC Applications 3
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

using PTC.DataLayer.EntityClasses;

Add a new property to your view model class that you can use to bind to the
user interface.

public ProductSearch SearchEntity { get; set; }

Add the following line of code to the Init() method

SearchEntity = new ProductSearch();

Locate the BuildCollection method and add the following code after you set
the DataCollection to the results of the db.Products.ToList().

// Filter the collection
if (DataCollection != null && DataCollection.Count > 0) {
 if (!string.IsNullOrEmpty(SearchEntity.ProductName)) {
 DataCollection = DataCollection.FindAll(
 p => p.ProductName
 .StartsWith(SearchEntity.ProductName,
 StringComparison.InvariantCultureIgnoreCase));
 }
}

Hook up the Buttons
Many MVC developers add a separate controller method for each button and
hyperlink they add to a page. This leads to a lot of methods in your controller.
Instead, add a string property, named EventAction, in your ProductViewModel
class that tells you which button or hyperlink was pressed. This string value is
going to be set into the EventAction property via a tiny bit of jQuery code. Add
the following property to the ProductViewModel class.

public string EventAction { get; set; }

Modify the Init() method to initialize this property.

EventAction = string.Empty;

Go back to the PTC web project, open the Product.cshtml page, and add a
<form> tag around your HTML using the Html helper BeginForm() method.

Using MVVM in MVC Applications

4 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

@using (Html.BeginForm()) {
 // HTML Code you wrote before
}

Add a hidden control to bind to the EventAction property you created.

@using (Html.BeginForm()) {
 @Html.HiddenFor(m => m.EventAction,
 new { data_val = "false" })

 // HTML Code you wrote before
}

Build Search Input HTML
Add a panel to build the search area on the page. Add the following HTML
below the hidden control and before the other HTML code you wrote earlier.
Notice in this code you are binding to the ProductName property of the
ProductSearch class you built earlier.

Search for Products

Using MVVM in MVC Applications 5
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

<div class="panel panel-primary">
 <div class="panel-heading">
 <h1 class="panel-title">Search for Products</h1>
 </div>
 <div class="panel-body">
 <div class="form-group">
 @Html.LabelFor(m => m.SearchEntity.ProductName,
 "Product Name")
 @Html.TextBoxFor(m => m.SearchEntity.ProductName,
 new { @class = "form-control" })
 </div>
 </div>
 <div class="panel-footer">
 <button id="btnSearch"
 class="btn btn-sm btn-primary"
 data-pdsa-action="search">
 <i class="glyphicon glyphicon-search"></i>
 Search
 </button>
 <button id="btnReset"
 class="btn btn-sm btn-primary"
 data-pdsa-action="resetsearch">
 <i class="glyphicon glyphicon-share-alt"></i>
 Reset
 </button>
 </div>
</div>

Add JavaScript File for Retrieve Action
In the HTML you just wrote, notice the data-pdsa-action attributes are filled
in with two string values; search and resetsearch. Each time one of the
buttons is clicked on, you want to take the associated string value and put it
into to the hidden field. You then submit the form to have it post back to the
Product controller with the SearchEntity.ProductName value from the text box
filled in, and the EventAction property filled in with either “search” or
“resetsearch”.
Right mouse click on the \scripts folder and select Add | JavaScript file. Set
the name to pdsa-action.js. Write the following code within this file.

Using MVVM in MVC Applications

6 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

$(document).ready(function () {
 // Connect to any elements that have 'data-pdsa-action'
 $("[data-pdsa-action]").on("click", function (e) {
 e.preventDefault();

 // Fill in hidden field with action to post back to model
 $("#EventAction").val($(this).data("pdsa-action"));

 // Submit form with hidden values filled in
 $("form").submit();
 });
});

Go to the bottom of your Product.cshtml page and add a reference to this
script file.

@section scripts {
 <script type="text/javascript"
 src="~/scripts/pdsa-action.js"></script>
}

Add Post Method in Controller
Now that you are ready to handle post backs from the user, you need to add
an HttpPost method to your ProductController class. Open the
ProductController class and add a new method that looks like the following.

[HttpPost]
public ActionResult Product(ProductViewModel vm) {

 // Handle action by user
 vm.HandleRequest();

 // Rebind controls
 ModelState.Clear();

 return View(vm);
}

Modify HandleRequest Method
Previously in the HandleRequest() method you had it calling the
BuildCollection and nothing else. You now have a couple of new actions that
can be performed. The user can choose to “search” or “resetsearch”. You
need to add a switch…case to handle these different event actions. Locate
the HandleRequest() method in your ProductViewModel and modify it to look
like the following.

Inform User of No Rows

Using MVVM in MVC Applications 7
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

public void HandleRequest() {
 // Make sure we have a valid event command
 EventAction = (EventAction == null ? "" :
 EventAction.ToLower());

 switch (EventAction) {
 case "search":
 break;

 case "resetsearch":
 SearchEntity = new ProductSearch();
 break;
 }

 BuildCollection();
}

Run the application, type in “b” into the Product Name search box, click the
Search button, and you should see just a list of products that start with the
letter “b”.

Inform User of No Rows
When the user searches and no rows are returned from that search, or if
there are just no rows in the Product table, you should inform the user of this
fact. You can display messages to the user using the Message property you
added earlier to the ProductViewModel class. Modify the HandleRequest()
method and add the following after the call to the BuildCollection() method.

if (DataCollection.Count == 0) {
 Message = "No Product Data Found.";
}

Open the Product.cshtml page and add the following lines of code around all
the HTML that displays the table on this page. Don’t wrap it around the
“search” area of the page.

Using MVVM in MVC Applications

8 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

@if (Model.DataCollection.Count > 0) {
 <div class="table-responsive">
 ... // ALL THE OTHER HTML HERE
 </div>
}
else {
 <div class="row">
 <div class="col-xs-12">
 <div class="jumbotron">
 <h2>@Model.Message</h2>
 </div>
 </div>
 </div>
}

Run the Product page and enter a few random letters into the search text box.
Click on the Search button and you should see the message displayed.

Use Partial Pages
Instead of putting all the HTML for this page on a single cshtml page, let’s
break each area up into separate partial pages. Copy and paste the
Product.cshtml page into the \Product folder. Rename the new file to
_ProductList.cshtml. Leave the @model directive at the top of the file, and
then just leave the logic for building the HTML table of product data.
Once again, copy and paste the Product.cshtml page into the \Product folder.
Rename the new file to _ProductSearch.cshtml. Leave the @model directive
at the top of the file, and leave everything that is associated with the search
area. This is the HTML between the <div class="panel panel-primary"> and
the </div> for that panel.
Open the Product.cshtml and modify this file to look like the following:

Summary

Using MVVM in MVC Applications 9
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

@using PTC.ViewModelLayer
@model ProductViewModel

@using (Html.BeginForm()) {
 @Html.HiddenFor(m => m.EventAction,
 new { data_val = "false" })

 @Html.Partial("_ProductSearch", Model)
 @Html.Partial("_ProductList", Model)
}

@section scripts {
 <script type="text/javascript"
 src="~/scripts/pdsa-action.js"></script>
}

Run the application and everything should still be working.

Summary
In this blog post, you broke up the MVC page into two partial pages that are
called from the main page. You learned how to handle all post backs with just
a single post method in your MVC controller. You created additional code in
your view model to handle searching for products. In the next blog post you
add a detail page and learn to add products to the product table.

Sample Code
You can download the code for this sample at www.pdsa.com/downloads.
Choose the category “PDSA Blogs”, then locate the sample Using MVVM in
MVC Applications.

http://www.pdsa.com/downloads

	Using MVVM in MVC Applications – Part 2
	Search for Products
	Hook up the Buttons
	Build Search Input HTML
	Add JavaScript File for Retrieve Action
	Add Post Method in Controller
	Modify HandleRequest Method

	Inform User of No Rows
	Use Partial Pages
	Summary
	Sample Code

