

Using MVVM in MVC Applications – Part
1

This blog post is the first in a series of four posts to discuss how to use a
Model-View-View-Model (MVVM) approach in an MVC application. The
MVVM approach has long been used in WPF applications, but has not been
prevalent in MVC applications. Using a View Model class in MVC makes good
sense as this blog post illustrates. You are going to be guided step-by-step
building an MVC application using the Entity Framework and a View Model
class to create a full CRUD web page.

Model-View-View-Model Approach
The reasons why programmers are adopting MVVM design pattern is the
same reasons why programmers adopted Object Oriented Programming
(OOP) over 30 years ago: reusability, maintainability and testability. Wrapping
the logic of your application into classes allows you to reuse those classes in
many different applications. Maintaining logic in classes allows you to fix any
bugs in just one place and any other classes using that class automatically
get the fix. When you don’t use global variables in an application, testing your
application becomes much simpler. Wrapping all variables and logic that
operates upon those variables into one class allows you to create a set of
tests to check each property and method in the class quickly and easily.
The thing to remember with MVVM is all you are doing is moving more of the
logic out of the code behind of a user interface, or an MVC controller, and into
a class that contains properties and methods you bind to the user interface.
To use MVVM you must be using classes and not just writing all your code in
a MVC controller. The whole key to MVVM or MVC is the use of classes with
properties and methods that mimic the behavior you want in the UI. This
means setting properties that are bound to UI controls and calling methods
when you want to perform some action that you would normally write in a
controller method.

Using MVVM in MVC Applications

2 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Why Use MVVM in MVC
There are many reasons for using MVVM in an MVC application. Below are
some of them.
1. Eliminate code in controller

a. Only two controller methods are needed
2. Simplify the controller logic
3. Can just unit test the view model and not the controller
4. View model classes can be reused in different types of projects (WPF,

Web Forms, etc.)

Our Goal
This series of blog posts have a few goals for you to accomplish.
1. Create a product table
2. Create a set of MVC pages to list, search, add, edit, delete and validate

product data
3. Create a view model class to handle all these functions
4. Write just two small methods in an MVC controller

Create a Product Table
For this sample, create a table called Product in a SQL Server database. In
the following code snippet, you see the full definition of the Product table.

Create a Product Table

Using MVVM in MVC Applications 3
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

CREATE TABLE Product (
 ProductId int NOT NULL
 IDENTITY(1,1)
 PRIMARY KEY NONCLUSTERED,
 ProductName varchar(150) NOT NULL,
 IntroductionDate datetime NOT NULL,
 Url varchar(255) NOT NULL,
 Price money NOT NULL
)

Add Data to the Table
Once you create the table, add some data to each field. Create enough rows
that you can see several rows on your final HTML page. Below is the data
that I used to create the list of product data for this sample application.

Figure 1: Product data

Here is the script to add the data to the Product table.

ProductId ProductName IntroductionDate Url Price
1 Extending Bootstrap with CSS, JavaScript and jQuery 6/11/2015 http://bit.ly/1SNzc0i 29.00$
2 Build your own Bootstrap Business Application Template in MVC 1/29/2015 http://bit.ly/1I8ZqZg 29.00$
3 Building Mobile Web Sites Using Web Forms, Bootstrap, and HTML5 8/28/2014 http://bit.ly/1J2dcrj 29.00$
4 How to Start and Run A Consulting Business 9/12/2013 http://bit.ly/1L8kOwd 29.00$
5 The Many Approaches to XML Processing in .NET Applications 7/22/2013 http://bit.ly/1DBfUqd 29.00$
6 WPF for the Business Programmer 6/12/2009 http://bit.ly/1UF858z 29.00$
7 WPF for the Visual Basic Programmer - Part 1 12/16/2013 http://bit.ly/1uFxS7C 29.00$
8 WPF for the Visual Basic Programmer - Part 2 2/18/2014 http://bit.ly/1MjQ9NG 29.00$

Using MVVM in MVC Applications

4 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

SET IDENTITY_INSERT Product ON
GO
INSERT Product (ProductId, ProductName, IntroductionDate, Url,
Price)
VALUES (1, 'Extending Bootstrap with CSS, JavaScript and
jQuery', '2015-06-11', 'http://bit.ly/1SNzc0i', 29.0000);
INSERT Product (ProductId, ProductName, IntroductionDate, Url,
Price)
VALUES (2, 'Build your own Bootstrap Business Application
Template in MVC', '2015-01-29', 'http://bit.ly/1I8ZqZg',
29.0000);
INSERT Product (ProductId, ProductName, IntroductionDate, Url,
Price)
VALUES (3, 'Building Mobile Web Sites Using Web Forms,
Bootstrap, and HTML5', '2014-08-28', 'http://bit.ly/1J2dcrj',
29.0000);
INSERT Product (ProductId, ProductName, IntroductionDate, Url,
Price)
VALUES (4, 'How to Start and Run A Consulting Business',
'2013-09-12', 'http://bit.ly/1L8kOwd', 29.0000);
INSERT Product (ProductId, ProductName, IntroductionDate, Url,
Price)
VALUES (5, 'The Many Approaches to XML Processing in .NET
Applications', '2013-07-22', 'http://bit.ly/1DBfUqd',
29.0000);
INSERT Product (ProductId, ProductName, IntroductionDate, Url,
Price)
VALUES (6, 'WPF for the Business Programmer', '2009-06-12',
'http://bit.ly/1UF858z', 29.0000);
INSERT Product (ProductId, ProductName, IntroductionDate, Url,
Price)
VALUES (7, 'WPF for the Visual Basic Programmer - Part 1',
'2013-12-16', 'http://bit.ly/1uFxS7C', 29.0000);
INSERT Product (ProductId, ProductName, IntroductionDate, Url,
Price)
VALUES (8, 'WPF for the Visual Basic Programmer - Part 2',
'2014-02-18', 'http://bit.ly/1MjQ9NG', 29.0000);
SET IDENTITY_INSERT Product OFF
GO

Create All Projects
As there are three pieces to a MVVM application, the Model, the View and the
View Model, there are three Visual Studio projects you need to build within a
single solution.

• Data Layer Class Library (Model)

Create All Projects

Using MVVM in MVC Applications 5
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

• MVC Web Project (View)

• View Model Class Library (View Model)
Let’s start building those now.

Create the Web Project
Open Visual Studio and click on the File | New Project to display the New
Project window. Select Web from the Templates under Visual C#. From the
list in the middle of the window select ASP.NET Web Application (.NET
Framework). Set the name of this project to PTC as shown in Figure 2.

Figure 2: Create a new MVC Application named PTC.

Click the OK button. When prompted, choose the MVC template as shown in
Figure 3 and click the OK button.

Using MVVM in MVC Applications

6 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 3: Choose the MVC template

Add Entity Framework
You are going to be using the Entity Framework in all threes projects. While
you are still building this MVC project, let’s go ahead and add the necessary
DLLs and configuration file entries. Right mouse click on the project and
select Manage NuGet Packages… Click on the Browse tab and search for
Entity Framework. Click the Install button as shown in Figure 4.

Create All Projects

Using MVVM in MVC Applications 7
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

Figure 4: Install the Entity Framework using NuGet

Create the Data Layer Project
Let’s now build a project to just hold all data access classes and any other
Entity classes we need to create. Right mouse click on the solution and
choose Add | New Project. Select Windows from the Templates on the left
tree view. Select Class Library from the middle part of the window. Set the
name to PTC.DataLayer as shown in Figure 5.

Figure 5: Create a Class Library project for your Data Layer

Using MVVM in MVC Applications

8 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Click the OK button to create the new project. Delete the file Class1.cs as you won’t
need this. Right mouse click on this project and select Add | New Item… From the New
Item window select Data | ADO.NET Entity Data Model. Set the name to PTCData as
shown in Figure 6. Click the Add button.

Figure 6: Add an ADO.NET Entity Data Model to the Data Layer project

On the Entity Data Model Wizard screen that is now displayed (Figure 7),
select the Code First from database option.

Create All Projects

Using MVVM in MVC Applications 9
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

Figure 7: Choose the Code First from database option.

Click the Next button to advance to the next screen. On the next page of this
wizard (Figure 8) add a connection string where you created the Product
table. Leave everything else as it is on this page and click the Next button.

Using MVVM in MVC Applications

10 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 8: Add a connection string to point to your database.

You are now going to choose the Product table you created earlier in this blog
post. Drill down into your collection of tables and check the Product table as
shown in Figure 9.

Create All Projects

Using MVVM in MVC Applications 11
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

Figure 9: Select the Product table

Click the Finish button and Visual Studio will generate new classes that allow
you to create, read, update and delete data in the Product table.

Create View Model Project
The last project you need to add is one for your View Model classes. Right
mouse click on the solution and choose Add | New Project. Select Windows
from the Templates on the left tree view. Select Class Library from the middle
part of the window. Set the name to PTC.ViewModel as shown in Figure 10.
Click the OK button. Rename Class1.cs to ProductViewModel.cs.

Using MVVM in MVC Applications

12 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 10: Add a Class Library project for your View Models

Add Entity Framework
Just like you added the Entity Framework to the MVC project, you need to
add it to this project as well. Right mouse click on the project and select
Manage NuGet Packages… Click on the Browse tab and search for Entity
Framework. Click the Install button as shown in Figure 11.

Figure 11: Add the Entity Framework to your View Model layer

Create All Projects

Using MVVM in MVC Applications 13
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

Add References
Now that you have all the projects created, you need to add the appropriate
references in each. Add a reference to the PTC.DataLayer and
PTC.ViewModelLayer project from the PTC project. Add a reference to the
PTC.DataLayer project from the PTC.ViewModelLayer project.

Add Connection String to PTC Project
Copy the <connectionString> element from the PTC.DataLayer app.config file
to the PTC web.config file.

<connectionStrings>
 <add name="PTCData"
 connectionString="YOUR CONNECT STRING HERE"
 providerName="System.Data.SqlClient" />
</connectionStrings>

At this point, your solution should look like Figure 12.

Using MVVM in MVC Applications

14 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 12: Your solution is now ready to start working within.

Retrieve Product Data

Using MVVM in MVC Applications 15
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

Retrieve Product Data
Let’s start to write code in the ProductViewModel to retrieve a collection of
Products using the Entity Framework generated code. Open the
ProductViewModel class and add a couple of using statements:

using PTC.DataLayer;
using System.Collections.Specialized;

Add a property to the view model class to hold the collection of products.

public List<Product> DataCollection { get; set; }

Add another property to hold any messages to display to the user.

public string Message { get; set; }

Add an Init() method to initialize the DataCollection property and message
property.

public void Init() {
 // Initialize properties in this class
 DataCollection = new List<Product>();
 Message = string.Empty;
}

Add a constructor to call the Init() method

public ProductViewModel()
 : base() {
 Init();
}

Add a couple of methods to handle exceptions. You are not going to do any
exception publishing in this blog post, but you want to have the methods there
so you can add it easily later.

Using MVVM in MVC Applications

16 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

public void Publish(Exception ex, string message) {
 Publish(ex, message, null);
}

public void Publish(Exception ex, string message,
 NameValueCollection nvc) {
 // Update view model properties
 Message = message;

 // TODO: Publish exception here

}

Add a method named BuildCollection() that calls the PTCData class to
retrieve the list of products from the database table.

protected void BuildCollection() {
 PTCData db = null;

 try {
 db = new PTCData();

 // Get the collection
 DataCollection = db.Products.ToList();
 }
 catch (Exception ex) {
 Publish(ex, "Error while loading products.");
 }
}

HandleRequest Method
You are going to use the View Model class to handle many requests from
your UI. Instead of exposing many different methods from the
ProductViewModel class, let’s create a single public method named
HandleRequest(). For now, you are just going to call the BuildCollection()
method from this method. However, later, you are going to add a
switch…case statement to handle many different requests.

Create Product Controller

Using MVVM in MVC Applications 17
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

public void HandleRequest() {
 BuildCollection();
}

Create Product Controller
Now that you have the data layer and the view model classes created and
ready to return data, you need a controller that can call our HandleRequest()
method. Go back to the PTC project and right mouse click on the \Controllers
folder. Select Add | Controller… from the menu. Choose the MVC 5
Controller – Empty template and click the Add method as shown in Figure
13.

Figure 13: Add an empty MVC contoller

When prompted to set the Controller name, type in ProductController and
click the Add button as shown in Figure 14.

Using MVVM in MVC Applications

18 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 14: Create your Product controller

You will now see a controller class in your \Controllers folder that looks like
the following.

public class ProductController : Controller
{
 // GET: Product
 public ActionResult Index() {
 return View();
 }
}

Add a using statement at the top of this class so you can use the
ProductViewModel class in this controller.

using PTC.ViewModelLayer;

Modify the GET method to look like the following code.

public ActionResult Product() {
 ProductViewModel vm = new ProductViewModel();

 vm.HandleRequest();

 return View(vm);
}

List Products
Under the \Views folder see if you have a \Product folder already. If you don’t,
then add one. This folder is generally created when you add a controller
called ProductController. Right mouse click on the \Views\Product folder and

List Products

Using MVVM in MVC Applications 19
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

select the Add | MVC 5 View Page with Layout (Razor) from the menu as
shown in Figure 15.

Figure 15: Add an MVC View with a shared layout page

When prompted to set the name for the item, type in Product as shown in
Figure 16.

Figure 16: Create your Product MVC page

After setting the name you will be prompted to select the shared layout page.
Select the \Views\Shared_Layout.cshtml page as shown in Figure 17.

Using MVVM in MVC Applications

20 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 17: Select the _Layout.cshtml shared layout page

After the MVC page is added, add two statements as shown below.

@using PTC.ViewModelLayer
@model ProductViewModel

Write the code to display a table of product data. Add the following HTML
after the code shown above.

List Products

Using MVVM in MVC Applications 21
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

<div class="table-responsive">
 <table class="table table-condensed table-bordered
 table-striped table-hover">
 <thead>
 <tr>
 <th>Product Name</th>
 <th>Introduction Date</th>
 <th>Url</th>
 <th>Price</th>
 </tr>
 </thead>

 <tbody>
 @foreach (var item in Model.DataCollection) {
 <tr>
 <td>@item.ProductName</td>
 <td>
 @Convert.ToDateTime(item.IntroductionDate)
 .ToShortDateString()
 </td>
 <td>@item.Url</td>
 <td>
 @Convert.ToDecimal(item.Price).ToString("c")
 </td>
 </tr>
 }
 </tbody>
 </table>
</div>

Run the page and you should see a page that looks like the following.

Figure 18: You should now see some product data on your page

Using MVVM in MVC Applications

22 Using MVVM in MVC Applications
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Summary
In this blog post, you created the start of an MVC application that is going to
use a MVVM design pattern. You learned a few reasons why using an MVVM
approach is a solid design decision in almost any kind of application. In the
next blog post you learn to search for products and break up your single MVC
page into a couple of different partial pages.

Sample Code
You can download the code for this sample at www.pdsa.com/downloads.
Choose the category “PDSA Blogs”, then locate the sample Using MVVM in
MVC Applications.

http://www.pdsa.com/downloads

	Using MVVM in MVC Applications – Part 1
	Model-View-View-Model Approach
	Why Use MVVM in MVC

	Our Goal
	Create a Product Table
	Add Data to the Table

	Create All Projects
	Create the Web Project
	Add Entity Framework
	Create the Data Layer Project
	Create View Model Project
	Add Entity Framework

	Add References
	Add Connection String to PTC Project

	Retrieve Product Data
	HandleRequest Method

	Create Product Controller
	List Products
	Summary
	Sample Code

