
Getting Started with PouchDB -
Part 4

In the last three blog posts, you created a PouchDB database and modified
documents within it. You learned to search for documents within the database using
allDocs() and find(). In this fourth part of our ongoing series on PouchDB, you learn
to use map queries using the query() method.

Map Queries
Most of the queries you need to perform can be accomplished using allDocs() or the
find() plug-in. However, if you need to do something fairly complex, you can take
advantage of the query() method. This method allows you to pass in a map function
as the first parameter. In the map function you write any logic you want, to
determine which documents to return.
Think of the allDocs() and find() functions as very simple WHERE clauses in a
traditional relational database. Think of the query() function as a method which
allows you to do very fancy WHERE clauses. As you know, simple WHERE clauses
probably make up 95% of your SQL statements. The same is the case in NoSQL
databases. Always try to use allDocs() and find() before you turn to using the
query() method.

The query() Method Definition
The query() method takes up to 3 parameters:

db.query(function | "design doc name", [options], [callback])

The first parameter is either an inline map function, the name of a map function
defined elsewhere in your JavaScript, or a string with the name of a design
document stored in your database. Design documents are explained later in this
blog post. The options object has many of the same properties as what you used
when calling the allDocs() method. The last parameter you probably won't use as
you should be using promises and not callbacks. However, this last parameter can

Getting Started with PouchDB

2 Getting Started with PouchDB
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

come in handy if you needed to further refine the data returned from the query as
that data is passed to the callback function.
The map function you pass in calls the emit() function to return a key/value pair. The
map function is called once for each document in your database. Pass to the first
parameter of the emit() function, a valid property name in a document you wish to
emit as the "key". Pass to the second parameter, a valid property name(s) in a
document you wish to emit at the "value". An example of an inline function you
might supply to the query() function looks like the following.

function (doc, emit) {
 emit(key field, value field);
}

Temporary Views
When you pass in a function, or a function name to the query() method, you are
creating a temporary view. This means a full document scan is performed and a
temporary index is created with the resulting data. The data is returned by using this
index, and then this index is thrown away. It is not recommended that you use
temporary views in a production application. They are useful, however, for you to try
things out during development. All the techniques you are going to learn now about
temporary views are the same as for when you create persistent views in a design
document.

Using the query() Method
In the code below, pass to the query() function, a function with two parameters; doc
and emit. The doc parameter is filled in with the document each time it is called, the
emit is a callback function passed in from the query() method. To ensure you only
get those documents that have people in them, add an if statement to check for a
lastName property. If you find a document that has a lastName property, emit the
doc._id value as the "key", and concatenate the firstName, a space, and the
lastName values as the "value".

Temporary Views

Getting Started with PouchDB 3
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

function simpleQuery() {
 db.query(function (doc, emit) {
 // Only get documents with lastName property
 if (doc.lastName) {
 // Emit _id as key, first name + last name as the value
 emit(doc._id, doc.firstName + ' ' + doc.lastName);
 }
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

The output from the above query looks like the following:

{
 "total_rows": 5,
 "offset": 0,
 "rows": [
 {
 "key": "bjones",
 "id": "bjones",
 "value": "Bruce Jones"
 },
 {
 "key": "jkuhn",
 "id": "jkuhn",
 "value": "John Kuhn"
 },
 {
 "key": "mshane",
 "id": "mshane",
 "value": "Molly Shane"
 },
 {
 "key": "msheriff",
 "id": "msheriff",
 "value": "Madison Sheriff"
 },
 {
 "key": "psheriff",
 "id": "psheriff",
 "value": "Paul Sheriff"
 }
]
}

NOTE: If you eliminate the if statement to check for the lastName property, you get
back all the 'service' documents, in addition to the 'technician' documents, with their
value property set to 'undefined undefined'.

Getting Started with PouchDB

4 Getting Started with PouchDB
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

A Key, But No Value
If you just want to get a key and not a value, pass one parameter to the emit()
function. The value property will be null when the result is output.

function simpleQueryNoValue() {
 db.query(function (doc, emit) {
 if (doc.lastName) {
 // Emit first name + last name as the key, no value
 emit(doc.firstName + ' ' + doc.lastName);
 }
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

The output from the above query looks like the following:

{
 "total_rows": 5,
 "offset": 0,
 "rows": [
 {
 "key": "Bruce Jones",
 "id": "bjones",
 "value": null
 },
 {
 "key": "John Kuhn",
 "id": "jkuhn",
 "value": null
 },
 {
 "key": "Madison Sheriff",
 "id": "msheriff",
 "value": null
 },
 {
 "key": "Molly Shane",
 "id": "mshane",
 "value": null
 },
 {
 "key": "Paul Sheriff",
 "id": "psheriff",
 "value": null
 }
]
}

Temporary Views

Getting Started with PouchDB 5
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

NOTE: You may also pass a null as the first parameter to have a null key. But,
doing so is of limited value, so you probably won't do this.

Return Multiple Values as Array
Instead of just returning a single field value as the value property, you may return an
array. Just create an array as the second parameter to the emit() function and pass
in a comma-separated list of property names.

function simpleQueryMultipleFields() {
 pouchDBSamplesCommon.hideMessageAreas();
 db.query(function (doc, emit) {
 if (doc.lastName) {
 // Emit _id as key, and two values; last name and first name
 emit(doc._id, [doc.lastName, doc.firstName]);
 }
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

The output from the above query looks like the following:

{
 "total_rows": 5,
 "offset": 0,
 "rows": [
 {
 "key": "bjones",
 "id": "bjones",
 "value": [
 "Jones",
 "Bruce"
]
 },
 {
 "key": "jkuhn",
 "id": "jkuhn",
 "value": [
 "Kuhn",
 "John"
]
 },
 // MORE DOCS HERE
]
}

Getting Started with PouchDB

6 Getting Started with PouchDB
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Return Multiple Values as Object
Instead of just returning a single field value as the value property, you may return an
object. Create a JSON object as the second parameter to the emit() function as
shown in the code below.

function simpleQueryWithObject() {
 pouchDBSamplesCommon.hideMessageAreas();
 db.query(function (doc, emit) {
 if (doc.lastName) {
 // Emit _id as key, object as value
 emit(doc._id, {
 "lname": doc.lastName,
 "fname": doc.firstName
 });
 }
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

The output from the above query looks like the following:

{
 "total_rows": 5,
 "offset": 0,
 "rows": [
 {
 "key": "bjones",
 "id": "bjones",
 "value": {
 "lname": "Jones",
 "fname": "Bruce"
 }
 },
 {
 "key": "jkuhn",
 "id": "jkuhn",
 "value": {
 "lname": "Kuhn",
 "fname": "John"
 }
 },
 // MORE DOCS HERE
]
}

NOTE: You may also specify an array or object for the first parameter of the emit()
function to return an array or object for the key property too.

Temporary Views

Getting Started with PouchDB 7
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Create and Use an External Function
You don't have to pass an inline function to the query() method. You can create a
function that accepts a document and the emit callback as shown below. NOTE:
You do not have to accept the emit parameter in this function.

function getServices(doc, emit) {
 if (doc.docType === 'service') {
 emit(doc._id, doc.cost);
 }
}

When you call the query() method, you now just pass the name of the function,
getServices, as the first parameter to the query() method. In the function below,
you are also including the second parameter to the query() method which is the
options object. Specifying include_docs: true returns the complete document
information just as you learned when you used the allDocs() method.

function mapFunction() {
 db.query(getServices,
 {
 include_docs: true
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

The output from the above query looks like the following:

Getting Started with PouchDB

8 Getting Started with PouchDB
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

{
 "total_rows": 5,
 "offset": 0,
 "rows": [
 {
 "key": "Carpentry",
 "id": "Carpentry",
 "value": 100,
 "doc": {
 "cost": 100,
 "docType": "service",
 "_id": "Carpentry",
 "_rev": "1-2166646e5efd4a00b7eca9ae09b06839"
 }
 },
 {
 "key": "Concrete",
 "id": "Concrete",
 "value": 75,
 "doc": {
 "cost": 75,
 "docType": "service",
 "_id": "Concrete",
 "_rev": "1-02b5f6046b3143f2b7b62b6e7c7cf7f2"
 }
 },
 {
 "key": "Electrical",
 "id": "Electrical",
 "value": 85,
 "doc": {
 "cost": 85,
 "docType": "service",
 "_id": "Electrical",
 "_rev": "1-34469ab9046140d1bd34e0563d31a8ab"
 }
 },
 {
 "key": "Plumbing",
 "id": "Plumbing",
 "value": 75,
 "doc": {
 "cost": 75,
 "docType": "service",
 "_id": "Plumbing",
 "_rev": "1-86290166aeeb4b309d47c0aa06851cb3"
 }
 },
 {
 "key": "Yard work",
 "id": "Yard work",
 "value": 25,
 "doc": {
 "cost": 25,
 "docType": "service",
 "_id": "Yard work",

Temporary Views

Getting Started with PouchDB 9
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

 "_rev": "1-c4e99b9d157a4d508d8c8cfbb162f087"
 }
 }
]
}

Apply Filter to Query
Just like you did with the allDocs() method you may add the startkey and endkey
properties in the options object. The filter is applied to the key property returned
from the emit().

function mapAndFilter() {
 pouchDBSamplesCommon.hideMessageAreas();
 db.query(getServices,
 {
 startkey: 'C',
 endkey: 'C\ufff0',
 include_docs: true
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

The output from the above query looks like the following:

Getting Started with PouchDB

10 Getting Started with PouchDB
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

{
 "total_rows": 5,
 "offset": 0,
 "rows": [
 {
 "key": "Carpentry",
 "id": "Carpentry",
 "value": 100,
 "doc": {
 "cost": 100,
 "docType": "service",
 "_id": "Carpentry",
 "_rev": "1-2166646e5efd4a00b7eca9ae09b06839"
 }
 },
 {
 "key": "Concrete",
 "id": "Concrete",
 "value": 75,
 "doc": {
 "cost": 75,
 "docType": "service",
 "_id": "Concrete",
 "_rev": "1-02b5f6046b3143f2b7b62b6e7c7cf7f2"
 }
 }
]
}

Persistent Views
As mentioned earlier, temporary views are fine for development, but should not be
used in production applications. Instead, use persistent views by creating design
documents with the map function pre-defined and stored in the database. The first
time you run the query, the data returned from the query is stored as a secondary
index in the database. This means all subsequent calls to the query() method are
performed much quicker.

Create a Design Document
To add a design document to your database, create a JSON object with an _id and
views properties. The _id property needs to be unique and should be prefixed with
"_design" followed by a slash, then a general name of the queries you are defining
within this design document. You may create one or more design document views,
which you learn how to do later. After defining your design document JSON object,
store it into your database using the put() method as shown in the following code.

Persistent Views

Getting Started with PouchDB 11
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

function createDesignDoc() {
 let ddoc = {
 _id: '_design/generalQueries',
 views: {
 allTechnicians: {
 map: function (doc) {
 if (doc.docType === 'technician') {
 emit(doc._id, doc.firstName + ' ' + doc.lastName);
 }
 }.toString()
 }
 }
 };

 // Save the design document
 db.put(ddoc).then(function () {
 // Successfully added
 pouchDBSamplesCommon.displayMessage("Design document created
successfully.");
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

Let's take a closer look at the views property as shown in the code below. In line 1
define the views property as an object. Create a property with a unique name for
each map function you wish to create. In line 2 you see a property name of
allTechnicians. This property is another JSON object with a single property named
map (line 3). This property is defined as a function that accepts a document object.
Do not pass the emit parameter like you did with the temporary views. The body of
the function (lines 4-6) can be any code you want, just like the ones you used in the
temporary views in this blog post. Finally, you apply the toString() method (line 7) to
this complete property so it can be stored into the database.

1. views: {
2. allTechnicians: {
3. map: function (doc) {
4. if (doc.docType === 'technician') {
5. emit(doc._id, doc.firstName + ' ' + doc.lastName);
6. }
7. }.toString()
8. }
9. }

Create Two Design Documents
If you remember from part 2 of this blog post series, you inserted two different kinds
of documents into the handyman database; technician and service documents. You
may wish to retrieve only one or the other, so these queries are ideal for persistent
views. Create these two views using the code shown below:

Getting Started with PouchDB

12 Getting Started with PouchDB
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

function createDesignDocs() {
 // First check to see if the design document exists
 db.get("_design/generalQueries")
 .then(function (doc) {
 pouchDBSamplesCommon.displayMessage("Design document: '" +
doc._id + "' already exists.");
 }).catch(function (err) {
 if (err.status == 404) {
 let ddoc = {
 _id: '_design/generalQueries',
 views: {
 allTechnicians: {
 map: function (doc) {
 if (doc.docType === 'technician') {
 emit(doc._id, doc.firstName + ' ' + doc.lastName);
 }
 }.toString()
 },
 allServices: {
 map: function (doc) {
 if (doc.docType === 'service') {
 emit(doc._id, doc.cost);
 }
 }.toString()
 }
 }
 };
 // Save the design document
 db.put(ddoc).then(function () {
 // Successfully added
 pouchDBSamplesCommon.displayMessage("Design document
created successfully.");
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
 }
 else {
 pouchDBSamplesCommon.displayMessage(err);
 }
 });
}

Retrieve all Technician Documents
Now that you created the two design documents, pass the name of the
"allTechnicians" view to the query() method as the first parameter. You don't specify
the word "_design" in the first parameter, but you do use the name that comes after
that, followed by a slash, then the property name you used to create the view. The
second parameter can still be an options object with any properties set that you
want to use.

Summary

Getting Started with PouchDB 13
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

function getTechnicians() {
 pouchDBSamplesCommon.hideMessageAreas();
 db.query("generalQueries/allTechnicians",
 {
 include_docs: true
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

Retrieve all Service Documents
Let's look at one more example of calling the allServices view. The code is the
same as what you used for retrieving all technicians, but the name of the view is
different.

function getServices() {
 db.query("generalQueries/allServices",
 {
 include_docs: true
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

Summary
In this fourth part of our series on PouchDB, you worked with the query() method to
filter documents on fields other than _id. The query() method is part of what is called
map/reduce queries. In this blog post you learned how to map data into an index
that can be used for searching. You also learned to create temporary views and
persistent views. Persistent views are the ones you should be using in your
production applications, while temporary views should only be used in development.
In the next blog post you learn to create reduce functions to provide summary data
out of your document data.

Getting Started with PouchDB

14 Getting Started with PouchDB
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Sample Code
You can download the complete sample code at my website.
http://www.pdsa.com/downloads. Choose "PDSA/Fairway Blog", then "Getting
Started with PouchDB - Part 4" from the drop-down.

http://www.pdsa.com/downloads

	Getting Started with PouchDB - Part 4
	Map Queries
	The query() Method Definition
	Temporary Views
	Using the query() Method
	A Key, But No Value
	Return Multiple Values as Array
	Return Multiple Values as Object
	Create and Use an External Function
	Apply Filter to Query

	Persistent Views
	Create a Design Document
	Create Two Design Documents
	Retrieve all Technician Documents
	Retrieve all Service Documents

	Summary
	Sample Code

