

Add Angular to MVC – Part 3
In this blog post, you are going to extend the last sample to allow the user to
add a new product. You are going to add a POST method to your Web API
controller. You will also create a new Angular component to handle getting
and displaying a product record.

Add an Add Button to Product List Page
You need to have a way to get into an “add” mode where you allow a user to
enter all the fields to create a new product as shown in Figure 1. You will
create the appropriate HTML for this page soon, but first, let’s create an Add
button on the main product listing page to get to this page.

Add Angular to MVC

2 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 1: Add new products via a product detail page.

Open the product-list.component.html file, and just below the <h2> tag add
the following HTML.

<div class="row">
 <div class="col-xs-12">
 <button class="btn btn-primary"
 (click)="add()">
 Add New Product
 </button>
 </div>
</div>

When you click on the Add New Product button, you want to route to the
new product detail page you are going to create. The add() function that is

Create Detail HTML

Add Angular to MVC 3
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

going to be called from the Click event on this button will perform this routing
functionality.

Update Product List Component
Let’s update the ProductListComponent class to perform this add
functionality. Open the product-list.component.ts file and add an import to use
the routing service in your class.

import { Router } from '@angular/router';

Locate the constructor in your ProductListComponent and add a second
parameter to this constructor to accept the Router service.

constructor(private productService: ProductService,
 private router: Router) {
}

Next, add a new function called add(). This function uses the injected router
service to call the navigate function. You pass an array to this navigate
function. The first parameter is a route to match up with a route you create in
your routing component. The second parameter is any parameter you wish to
pass. Later you use this product detail page to display an existing product, so
you will pass a real product ID as the second parameter. For now, since you
are just adding a new product, pass a -1.

add() {
 this.router.navigate(['/productDetail', -1]);
}

Create Detail HTML
Let’s now add the detail page to accept product data from the user. Right
mouse click on the \app\product folder and select Add | HTML page. Set the
name to product-detail.component.html and click the OK button. Delete all
the HTML in the new page and add the following HTML.

Add Angular to MVC

4 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

<div class="row" *ngIf="product">
 <div class="col-xs-12">
 <div class="panel panel-primary">
 <div class="panel-heading">
 <h1 class="panel-title">Product Information</h1>
 </div>
 <div class="panel-body">
 <!-- ** BEGIN: Error Message Area ** -->
 <div class="row"
 *ngIf="messages && messages.length">
 <div class="col-xs-12">
 <div class="alert alert-warning">

 <li *ngFor="let msg of messages">
 {{msg}}

 </div>
 </div>
 </div>
 <!-- ** END: Error Message Area ** -->

 <!-- ** BEGIN: Detail Entry Area ** -->
 <div class="form-group">
 <label for="productName">Product Name</label>
 <input id="productName"
 type="text"
 class="form-control"
 autofocus="autofocus"
 placeholder="Enter the Product Name"
 title="Enter the Product Name"
 [(ngModel)]="product.productName" />
 </div>
 <div class="form-group">
 <label for="introductionDate">
 Introduction Date</label>
 <input id="introductionDate"
 type="text"
 class="form-control"
 placeholder="Enter the Introduction Date"
 title="Enter the Introduction Date"
 [(ngModel)]="product.introductionDate" />
 </div>
 <div class="form-group">
 <label for="price">Price</label>
 <input id="price"
 type="number"
 class="form-control"
 placeholder="Enter the Price"
 title="Enter the Price"
 [(ngModel)]="product.price" />
 </div>
 <div class="form-group">
 <label for="url">URL</label>
 <input id="url"
 type="url"

Create Product Detail Component

Add Angular to MVC 5
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

 class="form-control"
 placeholder="Enter the URL"
 title="Enter the URL"
 [(ngModel)]="product.url" />
 </div>
 <!-- ** END: Detail Entry Area ** -->
 </div>
 <div class="panel-footer">
 <button class="btn btn-success"
 (click)="saveProduct()">Save</button>
 <button class="btn btn-primary"
 (click)="goBack()">Cancel</button>
 </div>
 </div>
 </div>
</div>

Listing 1: The HTML for the product detail page.

NOTE: I have purposefully left all validation off each input field. You will learn
about validation later.

Create Product Detail Component
Now that you have a product detail page, you need a component to go along
with it. Right mouse click on the \app\product folder and select Add |
TypeScript file. Set the name to product-detail.component.ts. Add the
following code for now. You will add more to this component later.

Add Angular to MVC

6 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

import { Component, OnInit } from "@angular/core";

import { Product } from "./product";

@Component({
 moduleId: module.id,
 templateUrl: "./product-detail.component.html"
})
export class ProductDetailComponent implements OnInit {
 product: Product;
 messages: string[] = [];

 ngOnInit() {
 this.product = new Product();
 this.product.price = 1;
 this.product.url = "http://www.fairwaytech.com";
 }
}

Update Routing
You have added the new detail component and HTML. You also wrote code
in the ProductListComponent to navigate to this new detail component.
However, before you can do that, you need to inform the Angular routing
service about the new detail component. Open the app-routing.module.ts file
and add a new import statement at the top of this file.

import { ProductDetailComponent }
 from "./product/product-detail.component";

Add a new route object after the other routes you had previously created. This
new route object references the ProductDetailComponent. The path property
is a little different because you want to pass a parameter name id to the
ProductDetailComponent class. For the add functionality, you are not going to
do anything with this -1 parameter you are passing in, however, for editing,
you will pass in a valid product id value in order to retrieve the product record
to edit.

Create Product Detail Component

Add Angular to MVC 7
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

const routes: Routes = [
 {
 path: 'productList',
 component: ProductListComponent
 },
 {
 path: 'Product/Product',
 redirectTo: 'productList'
 },
 {
 path: 'productDetail/:id',
 component: ProductDetailComponent
 }
];

Update AppModule
In the product detail HTML you reference the ngModel directive. However,
you have not told your Angular application that you wish to use this directive.
In order to do this, open the app.module.ts file and add an import statement
for the FormsModule package. This package includes the ngModel directive.

import { FormsModule } from '@angular/forms';

While you are in this file, also add an import for your new
ProductDetailComponent class you added.

import { ProductDetailComponent }
 from "./product/product-detail.component";

The FormsModule needs to be added to the imports property on your
NgModule decorator. The ProductDetailComponent should be added to the
declarations property on your NgModule decorator. Modify the NgModule
decorator to look like the following code.

Add Angular to MVC

8 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

@NgModule({
 imports: [BrowserModule, AppRoutingModule,
 HttpModule, FormsModule],
 declarations: [AppComponent,
 ProductListComponent,
 ProductDetailComponent],
 bootstrap: [AppComponent],
 providers: [ProductService]
})

Run the application, click on the Add New Product button and you should see
the detail page appear. Nothing else works at this point, but you just want to
verify that you can get to this point.

Add POST Method in Controller
To add the data the user inputs into the product detail page you just created,
you are going to need a POST method in your ProductApiController. When
you attempt to add a new product, business rules could fail because the user
did not fill out the fields correctly. For instance, a product name is required. If
the user does not fill one out and the ProductName property gets passed to
the server as a blank string, the code generated by the Entity Framework will
raise an exception.
The Insert() method in the ProductViewModel handles that situation and
converts all the validation errors generated by the Entity Framework into a
KeyValuePair<string, string> object. The key property in the KeyValuePair
object is the name of the property that was in error. The value property in the
KeyValuePair object is the error message supplied by the Entity Framework.
When you call the Insert() method in the ProductViewModel, the Messages
property might be filled in with a set of error messages. If this is so, you need
to take those messages and pass those back from the Web API.
The mechanism you use to communicate back to the caller that some
validation failed on an POST or PUT is to pass back a 400 (BadRequest) and
place a ModelStateDictionary object with the set of validation errors as the
payload. This means you need to take the list of KeyValuePair objects from
the view model and create a ModelStateDictionary object. Open the
ProductApiController.cs file and add the following using statement.

Add POST Method in Controller

Add Angular to MVC 9
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

using System.Web.Http.ModelBinding;

One note, on the above using statement. The ModelStateDictionary used by
the Web API is different from the one used by MVC controllers. Make sure
you are using the ModelStateDictionary class from the above namespace and
not the one used by MVC.
Now, you can write the ConvertMessagesToModelState method as shown
below.

private ModelStateDictionary ConvertMessagesToModelState(
 List<KeyValuePair<string, string>> messages) {
 ModelStateDictionary ret = new ModelStateDictionary();

 foreach (KeyValuePair<string, string> msg in messages) {
 ret.AddModelError(msg.Key, msg.Value);
 }

 return ret;
}

Before writing the Post() method, add a using statement so you can use the
Product class from the Entity Framework.

using PTC.Models;

Write the POST method to accept a Product object from the Angular caller.
This Post() method simply passes this Product object to the
ProductViewModel for processing. You then check the state of the view
model to determine what you should return as the IHttpActionResult.

Add Angular to MVC

10 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

[HttpPost]
public IHttpActionResult Post(Product product) {
 IHttpActionResult ret = null;
 ProductViewModel vm = new ProductViewModel();

 if (product != null) {
 if (vm.Insert(product)) {
 ret = Created<Product>(
 Request.RequestUri +
 vm.Entity.ProductId.ToString(),
 vm.Entity);
 }
 else {
 if (vm.Messages.Count > 0) {
 ret = BadRequest(
 ConvertMessagesToModelState(vm.Messages));
 }
 else if (vm.LastException != null) {
 ret = InternalServerError(vm.LastException);
 }
 }
 }
 else {
 ret = NotFound();
 }

 return ret;
}

Create addProduct Method in Product
Service

Now that you have a Web API that can be sent new product data to, let’s
write code in the ProductService class you created in the earlier blog posts.
Open the product.service.ts file and import two new services; Headers and
RequestOptions

import { Http, Response, Headers, RequestOptions }
 from '@angular/http';

Next, add an addProduct() function to this class to post a new product object
to the POST method on your ProductApiController class.

Create addProduct Method in Product Service

Add Angular to MVC 11
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

addProduct(product: Product): Observable<Product> {
 let headers = new Headers({ 'Content-Type':
 'application/json' });
 let options = new RequestOptions({ headers: headers });

 return this.http.post(this.url, product, options)
 .map(this.extractData)
 .catch(this.handleErrors);
}

When you post data, as opposed to getting data, you need to specify the
content type as JSON data. You do this by creating a new Headers object
and setting the ‘Content-Type’ property to ‘application/json’. Create a
RequestOptions object and set the headers property to this new Headers
object you created. Next, call the post method on the Http service passing in
the product object and the RequestOptions object.

Check for Validation Errors
One of three things could happen when you call the Post method. The data
will be successfully added to the back-end database table. A set of validation
errors is returned via a 400 error. Or, you could get an exception, in which
case, a 500 error is sent back. When you wrote the handleErrors() function
before, you handled a 404 and a 500 error, but you did not account for a 400.
Add a new case statement to handle a 400 in the handleErrors() function.

private handleErrors(error: any): Observable<any> {
 let errors: string[] = [];

 switch (error.status)
 {
 case 400: // Model State Error
 let valErrors = error.json().modelState;
 for (var key in valErrors)
 {
 for (var i = 0; i < valErrors[key].length; i++) {
 errors.push(valErrors[key][i]);
 }
 }
 break;

 ...

 return Observable.throw(errors);
}

In this new case statement, you retrieve the modelState property and loop
through all the key values and retrieve the message from the properties

Add Angular to MVC

12 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

returned. Each of these messages is pushed onto the errors array which is
then sent back to the caller via the Observable.throw() function.

Modify Product Detail Component
Now that you have the server-side Web API written, and you created the
product service on the client-side to call that, it is not time to add the
appropriate code to the ProductDetailComponent class you created earlier to
call the product service. First, add three new imports at the top of the product-
detail.component.ts file.

import { ActivatedRoute, Params } from '@angular/router';
import { Location } from '@angular/common';
import { ProductService } from "./product.service";

Add a constructor to this class.

constructor(
 private productService: ProductService,
 private route: ActivatedRoute,
 private location: Location
) { }

Add a method to allow the user to go back to the previous page if they click
on the cancel button.

goBack(){
 this.location.back();
}

Add a method to your class named handleErrors(). This method is called if
the call to the addProduct in the Product Service fails. In this method you loop
through the string array of errors and add them to the messages property.

Modify Product Detail Component

Add Angular to MVC 13
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

private handleErrors(errors: any) {
 for (let msg of errors) {
 this.messages.push(msg);
 }
}

Even though you are only performing an add in this blog post, go ahead and
add a stub function for updating a product as well. Create three new methods;
updateProduct, addProduct and saveProduct().

private updateProduct(product: Product) {

}

private addProduct(product: Product) {
 this.productService.addProduct(product)
 .subscribe(() => this.goBack(),
 errors => this.handleErrors(errors));
}

saveProduct() {
 if (this.product) {
 if (this.product.productId) {
 this.updateProduct(this.product);
 }
 else {
 this.addProduct(this.product);
 }
 }
}

See the Validation Errors
Run the application, click on the Add New Product button. Immediately click
on the Save button and you should see a set of validation errors appear on
the screen as shown in Figure 2.

Add Angular to MVC

14 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 2: Validation errors show up at the top of your detail page.

Add a New Product
Now, go ahead and add some good data for the product, click the Save
button and you should be redirected back to the list page where you will see
the new product you just added within the list.

Summary

Add Angular to MVC 15
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

Summary
In this blog post you created a detail page to enter new product data. You
added a new route to this page and created a component to handle the
processing of the new product data. You also added a POST method to your
Web API controller. You then created a function in your Angular product
service to post the data to the Web API. You also saw how to handle
validation errors returned from the server.

Sample Code
You can download the code for this sample at www.pdsa.com/downloads.
Choose the category “PDSA Blogs”, then locate the sample Add Angular to
MVC – Part 3. NOTE: After downloading the sample, you will need to right
mouse click on the package.json file and select the menu “Restore
Packages”.

http://www.pdsa.com/downloads

	Add Angular to MVC – Part 3
	Add an Add Button to Product List Page
	Update Product List Component

	Create Detail HTML
	Create Product Detail Component
	Update Routing
	Update AppModule

	Add POST Method in Controller
	Create addProduct Method in Product Service
	Check for Validation Errors

	Modify Product Detail Component
	See the Validation Errors
	Add a New Product

	Summary
	Sample Code

