

Add Angular to MVC – Part 2
In the first part of this blog series, you added Angular 2 to an MVC application
using Visual Studio. In this blog post, you will learn how to add a Web API
that can be called from an Angular service. You will modify the Global.asax to
automatically convert pascal-cased properties in C# classes into camel-cased
TypeScript properties. You will build an Angular service, learn to inject it into a
component, then call the service to retrieve product data. Finally, you will take
the returned data and build an HTML table. For this post, I am assuming you
are a Microsoft Visual Studio developer and are familiar with MVC, Angular,
C#, and the Web API.

Figure 1: The product list page written using Angular

Open up the project you created in the last blog post and follow along with the
steps outlined in this one to create the final project.

Add Angular to MVC

2 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Create Web API
To retrieve data from an Angular application, or any client-side technology,
you create a Web API. Right mouse click on the \Controllers folder and select
Add | Web API Controller Class (v2.1) from the menu. Set the name to
ProductApiController and click the OK button.
Delete all the code within this new controller class as you are going to write
your Web API methods using a more updated approach than what is
generated by Visual Studio. Type in the code listed in the code snippet below
to create a method that retrieves all products from the mock data returned
from the ProductViewModel class.

public IHttpActionResult Get() {
 IHttpActionResult ret;
 ProductViewModel vm = new ProductViewModel();

 vm.LoadProducts();
 if (vm.Products.Count() > 0) {
 ret = Ok(vm.Products);
 }
 else {
 ret = NotFound();
 }

 return ret;
}

Add WebApiConfig Class
If you did not have the Web API in your MVC application before, then you
need to add a WebApiConfig class to your project. Look in the the \App_Start
folder and see if the WebApiConfig.cs class exists. If not, right mouse click on
the \App_Start folder and add a new class. Set the name to WebApiConfig
and click the OK button. Make the class file look like the following:

Create Web API

Add Angular to MVC 3
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

using System.Web.Http;

namespace PTC
{
 public static class WebApiConfig
 {
 public static void Register(HttpConfiguration config) {
 // Web API configuration and services

 // Web API routes
 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

This code adds a new route template to the routes accepted by this MVC
application. Any call that starts with “api” is assumed to be a Web API call and
thus the ASP.NET engine knows to look for an class with the specified
controller name, and that inherits from the ApiController class.

Fix the Global.asax
If you open the \Models\Product class you see a standard C# class definition.
As you can imagine, you are going to have a similar class on the client-side
that maps all properties one-to-one from this C# class to the TypeScript class.
However, the C# class uses pascal-casing of properties, while our TypeScript
class is going to use camel-casing. You can add code to the Application_Start
method in the Global.asax file to automatically convert properties from pascal-
case to camel-case. Open the Global.asax file and at the top of the file add
the three using statements shown in this code snippet.

using Newtonsoft.Json.Serialization;
using System.Web.Http;
using System.Net.Http.Formatting;

Add a single line of code to the Application_Start method to call the
WebApiConfig.Register() method you just wrote. Place this line of code
before you call the RouteConfig.RegisterRoutes() method.

Add Angular to MVC

4 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

protected void Application_Start() {
 AreaRegistration.RegisterAllAreas();
 FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);

 // Add Web API
 GlobalConfiguration.Configure(WebApiConfig.Register);

 RouteConfig.RegisterRoutes(RouteTable.Routes);
 BundleConfig.RegisterBundles(BundleTable.Bundles);
}

Next, add code after all the registration calls to perform the pascal-case to
camel-case conversion for you.

// Get Global Configuration
HttpConfiguration config =
 GlobalConfiguration.Configuration;

// Convert to camelCase
var jsonFormatter = config.Formatters
 .OfType<JsonMediaTypeFormatter>()
 .FirstOrDefault();

jsonFormatter.SerializerSettings
 .ContractResolver = new
 CamelCasePropertyNamesContractResolver();

The above code selects the current GlobalConfiguration.Configuration
property and assigns it a variable called config. The next line of code queries
the Formatters collection and retrieves the first instance of a
JsonMediaTypeFormatter object it finds. Finally, you create a new instance of
a CamelCasePropertyNamesContractResolver and assign that to the
formatter’s ContractResolver property. This property controls how the JSON
objects are formatted and sent to the client-side caller.

Build Client-Side Product List
Now that you have your server-side pieces in place, and have gotten Angular
to work in your project, you can start building the HTML and classes to create
a list of products. There are two new files you are going to create in this part
of the article. One is a Product class and the other is a Product Service class.

Build Client-Side Product List

Add Angular to MVC 5
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

Create Product Class
As you are going to retrieve a collection of Product classes from the Web API,
you need a Product class written in TypeScript. Right mouse click on the
\app\product folder and select Add | TypeScript file from the context-
sensitive menu. Give this new file the name of product.ts. Add the following
code in this file.

export class Product {
 productId: number;
 productName: string;
 introductionDate: Date;
 price: number;
 url: string;
 categoryId: number;
}

Notice that the structure of this class is exactly like the Product class that the
Entity Framework generated. The only difference is the use of camel-case
instead of pascal-case. But, as you remember we added code in the
Global.asax to handle this conversion for us.

Create Product Service
We need an Angular product service to call the Web API controller you
created earlier. This product service will retrieve all products. Right mouse
click on the \app\products folder and select New | TypeScript file from the
menu. Set the name to product.service.ts and click the OK button. Add the
code shown in Listing 1.

Add Angular to MVC

6 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

import { Injectable } from '@angular/core';
import { Http, Response } from '@angular/http';
import { Observable } from 'rxjs/Observable';
import 'rxjs/add/operator/map';
import 'rxjs/add/operator/catch';
import 'rxjs/add/observable/throw';

import { Product } from "./product";

@Injectable()
export class ProductService {
 private url = "api/productApi";

 constructor(private http: Http) {
 }

 getProducts(): Observable<Product[]> {
 return this.http.get(this.url)
 .map(this.extractData)
 .catch(this.handleErrors);
 }

 private extractData(res: Response) {
 let body = res.json();
 return body || {};
 }

 private handleErrors(error: any): Observable<any> {
 let errors: string[] = [];

 switch (error.status) {
 case 404: // Not Found
 errors.push("No Product Data Is Available.");
 break;

 case 500: // Internal Error
 errors.push(error.json().exceptionMessage);
 break;

 default:
 errors.push("Status: " + error.status
 + " - Error Message: "
 + error.statusText);
 break;
 };

 console.error('An error occurred', errors);

 return Observable.throw(errors);
 }
}

Listing 1: The product service retrieves a collection of products from your Web
API.

Build Client-Side Product List

Add Angular to MVC 7
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

Let’s break down the code shown in Listing 1. You first import the various
classes and functions you need for this service using the ‘import’ keyword.

import { Injectable } from '@angular/core';
import { Http, Response } from '@angular/http';
import { Observable } from 'rxjs/Observable';
import 'rxjs/add/operator/map';
import 'rxjs/add/operator/catch';
import 'rxjs/add/observable/throw';

import { Product } from "./product";

The injectable class is needed to support the use of the @Injectable
decorator. This decorator informs Angular that this class may be injected into
the constructor of any component. The Http and Response classes are used
to access the Web API and to retrieve the response from the Web API. Next
is the Observable extension function supplied by RxJS or Reactive
Extensions for JavaScript. This is a library that helps you transform, compose
and query any type of data. In the ProductService class, you use it to take the
result set of data you retrieve from the Web API and turn it into an observable
collection of data. Next are a series of different reactive extensions to support
the map, catch and throw functions you use in this class. The last import is
the Product class you created. Since you want to return an array of product
objects returned from the Web API, you must import this class.
Angular will inject the Http service into our ProductService class. Any class
marked with the @Injectable decorator may be injected in any class by
declaring it in the constructor.

constructor(private http: Http) {
}

The next two functions in our class are getProducts and extractData. The
getProducts function calls our Web API using the get function of the http
service. It creates an observable array of products using the map extension
function. If data is retrieved, the ‘map’ function is called and passed a
reference to the extractData function. You don’t really need the extractData
function, but I like having this function as it makes it easy for me to set a
breakpoint in this function to see the data that has been returned. The
extractData function is passed in the HTTP response object. Call the json
function on this response object to retrieve the array of product data.

Add Angular to MVC

8 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

getProducts(): Observable<Product[]> {
 return this.http.get(this.url)
 .map(this.extractData)
 .catch(this.handleErrors);
}

private extractData(res: Response) {
 let body = res.json();
 return body || {};
}

The last function in this class is handleErrors.

private handleErrors(error: any): Observable<any> {
 let errors: string[] = [];

 switch (error.status) {
 case 404: // Not Found
 errors.push("No Product Data Is Available.");
 break;

 case 500: // Internal Error
 errors.push(error.json().exceptionMessage);
 break;

 default:
 errors.push("Status: " + error.status
 + " - Error Message: "
 + error.statusText);
 break;
 };

 console.error('An error occurred', errors);

 return Observable.throw(errors);
}

This function should be used to publish the error information. I am just going
to output the error to the console window of the browser. You inform the
calling code of the error by calling the throw function on the Observable class.
The Observable returns an array of strings. For this sample, you only need a
single error message to be returned, however, in other cases you will want
multiple error messages. You will see examples of this when handling
validation error messages.

Update the app.module.ts File
In order to inject the HTTP service in the ProductService class you need to
import the HttpModule in the app.module.ts file. You then add this imported
module to the @NgModule imports property. This makes it available for use in

Build Client-Side Product List

Add Angular to MVC 9
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

any of your classes. Angular will take care of injecting this service whenever it
sees a reference to Http as you saw in the constructor of your ProductService
class.

import { HttpModule } from '@angular/http';

@NgModule({
 imports: [BrowserModule, AppRoutingModule, HttpModule]
 ...
})

Remember you marked your ProductService as an @Injectable class. This
means you want Angular to automatically inject this service into any of your
class constructors. To accomplish this, you also need to import the
ProductService in your app.module.ts file and add this class to the providers
property.

import { ProductService }
 from "./product/product.service";

@NgModule({
 imports: [BrowserModule, HttpModule],
 declarations: [AppComponent],
 bootstrap: [AppComponent],
 providers: [ProductService]
})

Update Product List HTML Page
It is now finally time to build the components needed to display a list of
products like the page shown in Figure 1. Open the \app\product\product-
list.component.html you built earlier. Add the HTML shown in Listing 2.

Add Angular to MVC

10 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

<h2>Product List</h2>

<div class="row"
 *ngIf="products && products.length">
 <div class="col-xs-12">
 <div class="table-responsive">
 <table class="table table-bordered
 table-condensed table-striped">
 <thead>
 <tr>
 <td>Product Name</td>
 <td>Introduction Date</td>
 <td>URL</td>
 <td class="text-right">Price</td>
 </tr>
 </thead>
 <tbody>
 <tr *ngFor="let product of products">
 <td>
 {{product.productName}}
 </td>
 <td>
 {{product.introductionDate | date }}
 </td>
 <td>
 {{product.url}}
 </td>
 <td class="text-right">
 {{product.price | currency:'USD':true }}
 </td>
 </tr>
 </tbody>
 </table>
 </div>
 </div>
</div>

<div class="row"
 *ngIf="messages && messages.length">
 <div class="col-xs-12">
 <div class="alert alert-warning">

 <li *ngFor="let msg of messages">{{msg}}

 </div>
 </div>
</div>

Listing 2: Build the HTML table using the Angular *ngFor directive.

In the HTML that builds the product table, use the *ngIf directive to test if
there any products. If there are, then you build an HTML table using the
*ngFor directive to iterate over a collection named products in the
ProductListComponent class. Each time through the loop a product object is

Build Client-Side Product List

Add Angular to MVC 11
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

assigned to a local variable named product. Use this product variable to
retrieve each property of the Product class and display the value of each in
each cell of the table.
At the end of the HTML is another <div> element which displays any error
messages returned from the ProductListComponent class. This message is
set if an error occurs in the retrieval of the product data from the Web API.

Update Product List Component
From the HTML in Listing 2 you know that your ProductListComponent class
(Listing 3) must expose two properties to the HTML page; products and
message. This class must be injected with the ProductService class from
which you can request the product data. This class must also have some
exception handling in case the Web API throws an exception or does not
return data. Open the product-list.component.ts under the \app\product folder.
Modify this class to look like the code contained in Listing 3.

Add Angular to MVC

12 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

import { Component, OnInit } from "@angular/core";

import { Product } from "./product";
import { ProductService } from "./product.service";

@Component({
 moduleId: module.id,
 templateUrl: "./product-list.component.html"
})
export class ProductListComponent implements OnInit {
 constructor(private productService: ProductService) {
 }

 ngOnInit(){
 this.getProducts();
 }

 // Public properties
 products: Product[] = [];
 messages: string[] = [];

 private getProducts(){
 this.productService.getProducts()
 .subscribe(products => this.products = products,
 errors => this.handleErrors(errors));
 }

 private handleErrors(errors: any) {
 for (let msg of errors) {
 this.messages.push(msg);
 }
 }
}

Listing 3: The product listing component.

Let’s look at each piece of the ProductListComponent class and learn why
you need each line of code, and what each does. The first step is to import
the various classes you use within this class. The following four imports are
used in this class.

import { Component, OnInit } from "@angular/core";

import { Product } from "./product";
import { ProductService } from "./product.service";

You can see the Component import is needed for the @Component
decorator. The templateUrl property in the decorator points to the product-
list.component.html page you just created.
The OnInit import is needed to support the ngOnInit lifecycle event which is
raised when the Angular engine creates an instance of this class. We use the

Build Client-Side Product List

Add Angular to MVC 13
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

ngOnInit function to call the getProducts function to retrieve the product data
from the Web API.
The last two imports are easy to understand; we need the Product class
because we are expecting to fill an array of Product objects from our call to
the Web API. The ProductService class is used to call that Web API.
The constructor for this class receives the ProductService class from Angular
injection and assigns that instance to the private property named
productService.

constructor(private productService: ProductService) {
}

Two properties are declared in this class; products and messages. The
products property is an array of Product objects. Initialize this property to an
empty array by using the = []; syntax after the declaration of this property. The
messages property is a string array used to display any error messages on
the page.

// Public properties
products: Product[] = [];
messages: string[] = [];

The getProducts function calls the getProducts function from the
ProductService class. This function returns an observable array of products
from the map function, so use the subscribe function to retrieve the product
array and assign it to the products property in this class. If an error occurs
when calling the Web API, the function in the second parameter to the
subscribe function is called. Take the error object passed back from the
ProductService and pass that to the handleErrors function in this class.

getProducts() {
 this.productService.getProducts()
 .subscribe(products => this.products = products,
 errors => this.handleErrors(errors));
}

The handleErrors function simply loops through the list of error messages
sent by the Observable.throw() in the Product service and adds each
message to the messages array. This array is bound to an unordered list on
the product-list.component.html page.

Add Angular to MVC

14 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

handleErrors(errors: any) {
 for (let msg of errors) {
 this.messages.push(msg);
 }
}

Update ProductController
Now that you are retrieving data from the Web API you created, you no longer
need the code in the Get() or the Post() methods in your ProductController
class. Open the ProductController class and delete the Post() method. Modify
the Get() method to look like the following.

public ActionResult Product() {
 return View();
}

Summary
In these last two blog posts you added Angular into an MVC application. You
learned to use Angular routing to route from MVC to Angular. You created a
Web API on your server to return data to an Angular service. You then
displayed a list of the data returned on an HTML page. In the next blog post
you learn to add a new product.

Sample Code
You can download the code for this sample at www.pdsa.com/downloads.
Choose the category “PDSA Blogs”, then locate the sample Add Angular to
MVC – Part 2. NOTE: After downloading the sample, you will need to right
mouse click on the package.json file and select the menu “Restore
Packages”.

http://www.pdsa.com/downloads

	Add Angular to MVC – Part 2
	Create Web API
	Add WebApiConfig Class
	Fix the Global.asax

	Build Client-Side Product List
	Create Product Class
	Create Product Service
	Update the app.module.ts File
	Update Product List HTML Page
	Update Product List Component

	Update ProductController
	Summary
	Sample Code

