

Add Angular to MVC – Part 1
Many of us have MVC applications currently running. You would like to start
using Angular 2 or 4 in your web applications, but don’t have the time to
completely rewrite. It would be nice if you could just re-write one or two pages
in Angular and keep the rest of your MVC project in place. Turns out you can.
In this blog post, you will learn how to add Angular 2 or 4 to your MVC
applications. For this post, I am assuming you are a Microsoft Visual Studio
developer and are familiar with MVC, Angular, C#, and the Web API.

Setup Your Machine
Before you begin to use Angular, you must prepare your development
machine. There are two tools required, as well as you must configure Visual
Studio 2015 to use TypeScript. You should also get the Angular quick start
project.

Install Node
If you have not done so already, download and install Node.js and NodeJS
Package Manager (npm). You can get these two packages at
https://nodejs.org/en/download/. Follow the instructions for downloading and
installing these tools on nodejs.org.

Configure Visual Studio 2015
Most developers are using TypeScript for Angular development. Ensure you
have downloaded and installed TypeScript 2.x for Visual Studio 2015. Select
the Tools | Extensions and Updates menu to bring up the Extensions and
Updates window (Figure 1) for Visual Studio. Click on the Installed node in
the tree view and look through your list and see if you have installed
TypeScript 2.x. If you have an older version of TypeScript you need to update
it.

https://nodejs.org/en/download/

Add Angular to an MVC Application

2 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 1: Use the Extensions and Updates window to check for TypeScript.

To update to TypeScript 2.x, click on the Online node in the tree view and
perform a search for TypeScript. Locate the latest version of TypeScript and
download and install it into Visual Studio.
One last configuration item for Visual Studio is to select the Tools | Options
menu and expand the Projects and Solutions node. Click on the External Web
Tools (Figure 2). Ensure that the $(PATH) variable is located above any
$(DevEnvDir) variables if they exist in your environment. In my installation of
Visual Studio, these variables did not exist.

Sample MVC Application

Add Angular to MVC 3
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

Figure 2: Make sure the $(PATH) variables is high in your location of external
tools.

Download Angular Quick Start
Now that you have configured Visual Studio, you are going to need some
configuration files and some TypeScript files to make it easier to get started
with Angular. The Angular team has created a sample project that contains
these files. This sample project is not a Visual Studio project, so you are only
going to use some of the files from this project and not bring all of them into
your project. Download the quick start zip file from
https://github.com/angular/quickstart. After the zip file has been downloaded,
unzip the files into a folder on your hard drive.

Sample MVC Application
Let’s look at a sample MVC application, named PTC, that I am going to use
as a demonstration (Figure 3). You can download this sample, and the final
sample by following the instructions at the end of this blog post.

https://github.com/angular/quickstart

Add Angular to an MVC Application

4 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 3: A sample MVC application to display a product list

This is a vanilla MVC application that does not have the Web API in it. It has
the following classes that are of interest.

File Description

ProductController The MVC controller to display the \Views\Product\Product.cshtml
page.

Product An entity class to represent a product object

PTCData-Extensions Additional validation for Product data

Sample MVC Application

Add Angular to MVC 5
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

PTCData Entity Framework generated data layer.

PDSAPageModeEnum Enumeration for the mode that page is currently in

ProductViewModel A view model that is called from the ProductController to retrieve
data

_ProductDetail.cshtml A partial page to display, add, and edit a single product record.

_ProductList.cshtml A partial page that displays a list of product data

Product.cshtml A MVC page to list or edit product(s) retrieved from the view
model.

Table 1: A list of the classes in the PTC MVC application

Install Product Table
Before you can run this sample, you need to download the sample project,
locate the \SqlScripts folder and install the Product.sql into a SQL Server
database. After you have created the Product table, open the Web.config file
and adjust the connection string to point to your server and your database.

Test the Page
You can now run the Product.cshtml page and ensure you get something that
looks like Figure 4.

Figure 4: The product list page

Add Angular to an MVC Application

6 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Add Angular Files
You need to add a few Angular files from the quick start project you
downloaded. Prior to doing this, add a new folder named \app to your MVC
project. Using Windows Explorer, navigate to the folder where you extracted
the quick start files. Do NOT copy all these files into your Visual Studio
project, you do not need all of them. Locate and copy the following files into
the root of your new Visual Studio project.

• \package.json

• \tslint.json

• \src\tsconfig.json
Copy the file \src\systemjs.config.js into the \scripts folder of your VS project.
Copy the file \src\main.ts into the \app folder of your VS project. You will most
likely receive a message that your project has been configured to support
TypeScript. It will ask you if you want to search for TypeScript typings. Just
answer No as you are not going to need these right now.
Expand the \src\app folder in the quick start folder and copy the following
TypeScript files located in this folder into the \app folder you created in your
VS project.

• app.component.ts

• app.module.ts

Restore Packages
Even though you added some TypeScript files, nothing is going to work yet.
You need to download a new folder using the NodeJS Package Manager
(npm). Visual Studio can download all of these files using npm, but you must
first close and reopen Visual Studio. If you don’t close and reopen Visual
Studio, the appropriate menu item needed will not show up. Go ahead and
close your instance of Visual Studio now, then, reopen the ProductApp
project. Right mouse click on the package.json and select Restore Packages
(Figure 5) from the menu. This process takes a little while, so be patient.

Add Angular Files

Add Angular to MVC 7
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

Figure 5: The Restore Packages menu only shows up after closing and reopening
Visual Studio.

After the installation of the packages is complete, click on the Show All Files
icon in the Solution Explorer window. You should see a new folder has
appeared named node_modules (Figure 6). DO NOT include this folder in
your project, you do not need all these files in your project. They are just there
to support the various libraries you use when developing with Angular.

Add Angular to an MVC Application

8 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 6: Don’t include the node_modules folder in your project.

Add Links to the MVC Shared Layout
Navigate to where you installed the quick start files and open the
\src\index.html page. You need to copy a few lines of code from this page into
the \Views\Shared_Layout.cshtml file. Open the _Layout.cshtml file in Visual
Studio. Locate the following lines of code in the index.html page and paste
them into the <head> section of the _Layout.cshtml file.

Add Links to the MVC Shared Layout

Add Angular to MVC 9
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

<base href="/">

I like to the above line of code as the first one after the <head> element.
Locate the next lines that start with the comment shown below and copy them
all after the @Scripts.Render() and before the </head> element.

<!-- Polyfill(s) for older browsers -->
<script src="node_modules/core-js/client/shim.min.js">
</script>

<script src="node_modules/zone.js/dist/zone.js"></script>
<script src="node_modules/systemjs/dist/system.src.js">
</script>

<script src="systemjs.config.js"></script>
<script>
 System.import('main.js')
 .catch(function(err){ console.error(err); });
</script>

Since the _Layout is in a different location in your project from the index.html
in the quick start project, you need to fix up the src attributes. Add a forward
slash in front of each of the above references for the node_modules.

<script src="/node_modules/core-js/client/shim.min.js">
</script>

<script src="/node_modules/zone.js/dist/zone.js"></script>
<script src="/node_modules/systemjs/dist/system.src.js">
</script>

For the systemjs.config.js file, you placed that into the Scripts folder, so you
need to add /scripts/ in front of that file reference.

<script src="/scripts/systemjs.config.js"></script>

Locate the <script> tag that is responsible for importing the main.js file which
is transpiled from the main.ts file. This code is shown in the following code
snippet.

Add Angular to an MVC Application

10 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

<script>
 System.import('main.js')
 .catch(function(err){ console.error(err); });
</script>

Since you moved the main.ts file into the \app folder, modify the parameter
passed to the import function to ‘app/main’ as shown in the following snippet.

<script>
 System.import('/app/main')
 .catch(function(err){ console.error(err); });
</script>

In the quick start project, the main.ts file was expecting to find the
app.module.ts file in the \app folder below the root folder. However, since
these two files are now located in the same folder, you need to open the
main.ts file located in the \app folder and locate the following line of code.

import { AppModule } from './app/app.module';

Remove the ‘/app’ portion from this line of code so that the final code looks
like the following snippet.

import { AppModule } from './app.module';

You should run your Product page again just to make sure that your
application still compiles and runs.

Eliminate Hard-Coded HTML Template
The app.component.ts file contains a template property to output some
HTML. I do not like having HTML written in TypeScript, so create an HTML
page to display the HTML for the landing page of your Angular application.
Right mouse click on the \app folder and select Add | HTML Page and set the
name to app.component.html. Click the OK button. Remove the HTML in the
page and replace it with the following:

Eliminate Hard-Coded HTML Template

Add Angular to MVC 11
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

<router-outlet></router-outlet>

In the HTML above you are adding a location for the Angular routing engine
to place HTML that comes from different components. For example, you are
going to create a product list component and corresponding HTML page to
display product data. That HTML will be placed in between these two tags.
Open the \app\app.component.ts file and you will see the following
declaration.

@Component({
 selector: 'my-app',
 template: `<h1>Hello {{name}}</h1>`,
})

Now that you have created the new HTML page, you are going to remove the
hard-coded HTML from the template property in the @Component decorator.
I have found that if you have any more than a few lines of HTML, this property
becomes cumbersome to maintain. Let’s change the template property to the
templateUrl property and set that property to the string ‘app.component.html’.

@Component({
 moduleId: module.id,
 selector: 'my-app',
 templateUrl: './app.component.html'
})

Another change you are making to this @Component decorator is adding the
property moduleId and setting that property to the value module.id. This
property helps Angular understand relative paths in relation to the current
component. If you did not use the moduleId property, then you change the
templateUrl property to ‘./app/app.component.html’. I prefer to use relative
paths as opposed to having to fully quality the path in relation to the root.
The AppComponent class that came with the quick start sample has a name
property set to the word ‘Angular’. Just delete this code and make your
AppComponent class look like the following:

export class AppComponent { }

You will learn more about how the routing works a little later in this article. But
first, let’s build the product list component and HTML.

Add Angular to an MVC Application

12 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Stub the Angular Product Components
To test that you can route to a Product list page from your MVC page, create
a couple of new files.
Right mouse click on the \app folder and add a new folder called \product.
Right mouse click on this product folder and add a new HTML page called
product-list.component.html. Delete all the HTML in this new page and add
the single line below:

<h2>Product List</h2>

Right mouse click on the product folder and add a new TypeScript file named
product-list.component.ts. Add the following code:

import { Component } from "@angular/core";

@Component({
 moduleId: module.id,
 templateUrl: "./product-list.component.html"
})
export class ProductListComponent { }

Update the app.module.ts File
Add the ProductListComponent class to the app.module.ts. Open the
app.module.ts file and add an import near the top of the file that looks like the
following.

import { ProductListComponent }
from "./product/product-list.component";

In the @NgModule decorator, add the ProductListComponent class to the
declarations property by adding a comma after AppComponent and typing in
the name of this class as shown below.

Angular Routing

Add Angular to MVC 13
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

declarations: [AppComponent, ProductListComponent]

Angular Routing
No Angular application would be complete without routing. Routing allows us
to navigate from one page to another. The app.component.html page you just
created is the main page for getting to other pages in our application via the
routing engine. Add a new TypeScript file called app-routing.module.ts and
add the code shown in Listing 1.

import { NgModule } from '@angular/core';
import { RouterModule, Routes }
 from '@angular/router';

import { ProductListComponent }
 from "./product/product-list.component";

const routes: Routes = [
 {
 path: 'productList',
 component: ProductListComponent
 },
 {
 path: 'Product/Product',
 redirectTo: 'productList'
 }
];

@NgModule({
 imports: [RouterModule.forRoot(routes)],
 exports: [RouterModule]
})
export class AppRoutingModule { }

Listing 1: The routine class defines one or more routes for your application.

The important part of the app-routing.module.ts file is the constant named
routes. This constant contains an array of Route objects. Each object has a
path property which is used in the routerLink attribute you created earlier. If
the path matches the address in the browser, then the component property is
used to instantiate an instance of the object listed in this property. Once this
class is instantiated, the HTML defined in that classes templateUrl property is
inserted into the location where the <router-outlet> directive is located.

Add Angular to an MVC Application

14 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

The routes constant is added to the singleton instance of the Router service
using the forRoot function. You can see this in the imports property of the
@NgModule decorator. You can add as many routes to the routes constant
as you need for your application.

Overview of Angular Routing
With all that description above, I thought a graphical representation (Figure 7)
of the Angular routing you are using in this application might help clear things
up a little.

Figure 7: An overview of the Angular routing process.

1. Anytime the browser address bar is updated via an anchor tag, or other
mechanism, the last part of the address is matched up to one of the routes
added to the singleton instance of the Router service.

2. Once it finds the path in the Router service, it instantiates the class listed
in the component property.

3. After the class is instantiated, the templateUrl property is read from the
@Component decorator.

4. The HTML from the file listed in the templateUrl property is loaded and
inserted into the DOM at the location of the <router-outlet> directive.

Angular Routing

Add Angular to MVC 15
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

Update the app.module.ts File
Just as you have done with all your other classes you created, you need to
declare your intention to use routing in the app.module.ts file. Open the
app.module.ts file and add the following import statement near the top of the
file.

import { AppRoutingModule }
from './app-routing.module';

Add the AppRoutingModule to the imports property in the @NgModule
decorator. The imports property should now look like the following code
snippet.

imports: [BrowserModule, AppRoutingModule]

Call our Angular page from the Product.cshtml
page
Open the \Product\Product.cshtml page and delete all the code. Write the
following:

<my-app>Loading products...</my-app>

Remember the <my-app> is the selector in the app.component.ts file. When
this selector is encountered, the Angular system kicks in and starts loading
our Angular components to run. You have now successfully removed yourself
from the MVC system and are now running all client-side!

Run the Page
At this point you should be able to run the page and see the <h1> you
entered. Your page should like Figure 8.

Add Angular to an MVC Application

16 Add Angular to MVC
Copyright © 2017 by Fairway Technologies, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 8: You have rerouted to an angular page from an MVC page.

Summary
Congratulations! You have successfully integrated Angular into a Visual
Studio MVC Application. There are a lot of steps to get Angular up and
running, however, once you get the basics configured, adding new pages and
new components is quite easy because you use the same pattern you
learned in this post. In the next blog post, you add and call a Web API from
an Angular service, and display the product data in an HTML page using
Angular.

Sample Code
You can download the code for this sample at www.pdsa.com/downloads.
Choose the category “PDSA Blogs”, then locate the sample Add Angular to
MVC - Part 1. To run the sample, locate the \SqlScripts\Product.sql file and
run the script in a SQL Server database. Open the Web.config file in the

http://www.pdsa.com/downloads

Sample Code

Add Angular to MVC 17
Copyright © 2017 by Fairway Technologies, Inc.
All rights reserved. Reproduction is strictly prohibited.

project and update the connection string to point to your server and database
name.

	Add Angular to MVC – Part 1
	Setup Your Machine
	Install Node
	Configure Visual Studio 2015
	Download Angular Quick Start

	Sample MVC Application
	Install Product Table
	Test the Page

	Add Angular Files
	Restore Packages

	Add Links to the MVC Shared Layout
	Eliminate Hard-Coded HTML Template
	Stub the Angular Product Components
	Update the app.module.ts File

	Angular Routing
	Overview of Angular Routing
	Update the app.module.ts File
	Call our Angular page from the Product.cshtml page
	Run the Page

	Summary
	Sample Code

