
Upload Multiple Files
Asynchronously - Part 2

In this blog post, you are going to code a web page that allows a user to select one
or many files, and display a title and description input area for each file. Once the
user adds a title and a description, they click on an Upload button to upload the file
selected (see Figure 1), along with the title and the description entered about that
file. Each file is uploaded asynchronously through a Web API call and the progress
is reported in a progress bar that appears on the web page.

Figure 1: Allow a user to add a title and a description for each file selected for uploading.

Create HTML Page for Uploading Files
To build this sample, I am going to use Visual Studio, jQuery, Bootstrap 3.x and the
Microsoft ASP.NET Web API. However, feel free to use whatever tools you want. All
the front-end code is generic and can be used with any JavaScript framework.

Upload Multiple Files Asynchronously - Part 2

2 Upload Multiple Files Asynchronously - Part 2
Copyright © 2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

While I am using Microsoft's ASP.NET Web API, you should be able to adapt the
code to any Web API framework with ease.
To start creating this sample, bring up Visual Studio and select the ASP.NET Web
Application (.NET Framework) project. Choose the Empty template but select the
Web API option. Using the NuGet Package Manager, add Bootstrap 3.4.x to your
project. Make sure you are installing Bootstrap 3.4.x and not Bootstrap 4.x.
Installing Bootstrap 3.4.x also installs jQuery. After installing these, click on the
Updates tab in the NuGet Package Manager window and update any packages,
except Bootstrap.
Add an index.html page in the root of your project. Locate the <head> element and
modify it to look like the following code.

<head>
 <title>Upload Multiple Files Sample</title>
 <meta charset="utf-8" />
 <meta name="viewport"
 content="width=device-width, initial-scale=1" />

 <link href="/Content/bootstrap.min.css" rel="stylesheet" />
 <link href="/Content/site.css" rel="stylesheet" />
</head>

Right mouse-click on the Content folder and add a new style sheet named
site.css. Add the following rules in the site.css file.

.body-content {
 margin-top: 2em;
}

.file-upload-info-area {
 border: solid black .1em;
 margin-top: 1em;
 margin-bottom: .5em;
 padding: .5em;
}

Back in the index.html page, just below the <body> element, add a <div
class="container"> element. This is the main wrapper for Bootstrap to contain all
other Bootstrap CSS classes.

<div class="container body-content">
 <h1>Pass Title & Description with File To Upload</h1>

</div>

Create HTML Page for Uploading Files

Upload Multiple Files Asynchronously - Part 2 3
Copyright © 2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Add File Input Element
Just below the <h1> element, add another <div> with the class attribute set to
"form-group btn btn-primary". These Bootstrap classes style the file input element to
look like a Bootstrap button instead of a normal HTML button. Add a label and an
input type within the div. Notice the input element has the multiple attribute set. In
addition, it has the style attribute set to "display:none;". This allows the Bootstrap
CSS classes to style the file input element. The onchange event calls a method in a
closure named "uploadController.uploadFiles()". You are going to add this closure
and method a little later in this blog post.

<div class="form-group btn btn-primary">
 <label for="fileUploadControl">Select Files to Upload</label>
 <input type="file"
 id="fileUploadControl"
 onchange="uploadController.addFiles();"
 multiple="multiple"
 style="display:none;" />
</div>

Add Area to Gather User Input
Below the div that contains the file input element, add another div with an id
attribute set to "fileUploadProgressArea". It is within this div you display the user
inputs for title and description. You also display a label with the file name and a
progress bar for each file the user selects to upload.

<!-- BEGIN: File Upload Progress Area -->
<div id="fileUploadProgressArea">
 <!-- This area is where each file to be uploaded is displayed -->
</div>
<!-- END: File Upload Progress Area -->

Add Template for Each Progress Bar
Below the file upload progress area, add a <script> tag. Set the id attribute to
"fileUploadProgressTemplate" for this script tag and the type attribute to "text/html".
This lets the browser know that this script tag does not contain any executable
JavaScript, but plain text that should be ignored. The HTML contained within this
script tag is used to display the title and description input fields, an Upload button,
the file name being uploaded, and the progress bar as shown in Figure 1.

Upload Multiple Files Asynchronously - Part 2

4 Upload Multiple Files Asynchronously - Part 2
Copyright © 2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

<!-- BEGIN: Display File Upload Progress Template -->
<script id="fileUploadProgressTemplate" type="text/html">
 <div class="row file-upload-info-area">
 <div class="col-md-3">
 <div class="row">
 <div class="form-group">
 <label for="fileUploadLabel">File Name</label>
 <label id="fileUploadLabel" class="text-info"></label>
 </div>
 <div class="form-group">
 <label for="fileUploadTitle">File Title</label>
 <input type="text"
 id="fileUploadTitle"
 class="form-control" />
 </div>
 <div class="form-group">
 <label for="fileUploadDescription">
 File Description
 </label>
 <input type="text"
 id="fileUploadDescription"
 class="form-control" />
 </div>
 <div class="form-group">
 <button id="fileUploadButton"
 class="btn btn-primary">
 Upload
 </button>
 </div>
 </div>
 </div>
 <div class="col-md-offset-1 col-md-8">
 <div class="row">
 <div class="form-group">
 <div class="progress hidden">
 <progress id="fileUploadProgressBar"
 class="progress-bar progress-bar-success"
 value="0"
 max="100"
 style="width: 100%">
 </progress>
 </div>
 </div>
 <div class="form-group">
 <label id="fileUploadProgressComplete"
 class="text-info hidden">
 File Uploaded Successfully
 </label>
 </div>
 </div>
 </div>
 </div>
</script>
<!-- END: Display File Upload Progress Template -->

The uploadController Closure

Upload Multiple Files Asynchronously - Part 2 5
Copyright © 2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

You are going to write some JavaScript/jQuery code to clone the HTML within this
script tag. Once cloned, you are going to insert the cloned HTML into the div tag
with the id of "fileUploadProgressArea".

Add jQuery and Bootstrap
Add two more script tags to reference jQuery and the Bootstrap JavaScript library
from within the Scripts folder where they are installed by NuGet.

<script src="/Scripts/jquery-3.4.1.min.js"></script>
<script src="/Scripts/bootstrap.min.js"></script>

Make sure you check to see what version of jQuery is loaded after you update all
the packages using the NuGet Package Manager. You may need to change the
version of jQuery listed above. Also, strictly speaking, Bootstrap does not need to
be included on this page for this sample, but I like to include it just in case I use
some features of Bootstrap later.

The uploadController Closure
A best practice in JavaScript is to create closures around code. The
uploadController closure you attached earlier to the onchange event of the file input
element is what you are going to write now. To build this closure, add a new
<script> tag and add the closure and the stubs of the various methods you are
going to write to upload files, display the file name, and show the progress bar.

Upload Multiple Files Asynchronously - Part 2

6 Upload Multiple Files Asynchronously - Part 2
Copyright © 2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

<script>
 var uploadController = (function () {
 /*************************
 * Private Variables
 *************************/
 const UPLOAD_URL = "/api/FileUpload/UploadFile";
 var fileObjects = [];

 /*************************
 * Private Functions
 *************************/
 function addFiles() {
 }

 function uploadFileInfo(index) {
 }

 function cloneProgressBarTemplate(fileToUpload, index) {
 }

 function postFile(data, index) {
 }

 function updateProgressBar(e, index) {
 }

 /*************************
 * Public Functions
 *************************/
 return {
 uploadFiles: uploadFiles ,
 uploadFileInfo: uploadFileInfo
 }
 })();
</script>

addFiles() Method
Once the user selects one or more files using the file input element, the onchange
event is fired. That event calls the addFiles() method. The first thing to do is to grab
the collection of files by accessing the files method from the file input element that
has the id "fileUploadControl".

The uploadController Closure

Upload Multiple Files Asynchronously - Part 2 7
Copyright © 2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

function addFiles() {
 // Get collection of files selected by user
 var files = $("#fileUploadControl")[0].files;

 // Loop through collection of files selected by user
 for (var i = 0; i < files.length; i++) {
 // Add to files array
 fileObjects.push({
 "index": i,
 "uploadObject": files[i]
 });

 // Create new <div> for displaying file,
 // title, description and progress
 cloneProgressBarTemplate(files[i], i);
 }
}

Once you have the collection of files the user selected, loop through this collection
and, each time through the loop, store the index number and the file object to
upload into the fileObjects array. Storing this data into a local array makes your
code simpler for retrieving each file object later in the code.
After adding the file information to the fileObjects array, pass the file object and
index number to the cloneProgressBarTemplate() method. It is in this method where
the title and description input fields are created and added to the HTML page.

cloneProgressBarTemplate() Method
As you can see in Figure 1, the file name, a title, and description input areas are
displayed on the HTML page. The cloneProgressBarTemplate() method is
responsible for creating all of this new HTML for each file passed in. Instead of
writing JavaScript or jQuery code to create each of element required for the file
name label, the label and inputs for the tile and description and a progress bar
element, you create the HTML within the <script> tag with the id attribute set to
"fileUploadProgressTemplate". It is much easier to layout the HTML within an HTML
editor than it is to write the same code using JavaScript.
To create a new DOM element from the HTML within the <script> tag, use the
following line of code.

var elem = $($("#fileUploadProgressTemplate").html()).clone();

The variable elem is now a new DOM object and you can append that wherever you
wish using the append() method. For example, you created an empty <div> tag
earlier in this blog post with the id attribute set to "fileUploadProgressArea". Use the
following line of code to insert this newly cloned DOM object into that <div> tag.

Upload Multiple Files Asynchronously - Part 2

8 Upload Multiple Files Asynchronously - Part 2
Copyright © 2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

$("#fileUploadProgressArea").append(elem);

If you only needed a single DOM object for a single file, this is all the code you
would need. However, you can have multiple file objects selected by the user, so
you need to build multiple DOM objects. As you know, you are not allowed to have
multiple HTML elements with the same id attribute value. Therefore, you pass in the
index value of each file along with the file object. You use this index number to
create a unique id attribute value after you have cloned the HTML.
There are a few HTML elements within the <script> tag you are cloning that have id
attributes; "fileUploadLabel" and "fileUploadProgressBar" to name just a couple.
You are going to use the find() method on the new DOM element to locate any
elements with an id attribute. Set the id attribute to the name of the element plus an
underscore (_) plus the index number. Thus, the first file passed to this method from
the addFiles() method passes a zero (0) in the index, so the id attributes are
"fileUploadLabel_0" and "fileUploadProgressBar_0" respectively. The second time
through the id attributes are "fileUploadLabel_1" and "fileUploadProgressBar_1",
and so on.

function cloneProgressBarTemplate(fileToUpload, index) {
 // Clone the HTML from the template
 var elem = $($("#fileUploadProgressTemplate").html()).clone();

 // Replace the 'id' attributes with current index number
 $(elem).find("#fileUploadLabel").attr("id",
 "fileUploadLabel_" + index);
 $(elem).find("#fileUploadTitle").attr("id",
 "fileUploadTitle_" + index);
 $(elem).find("#fileUploadDescription").attr("id",
 "fileUploadDescription_" + index);
 $(elem).find("#fileUploadProgressBar").attr("id",
 "fileUploadProgressBar_" + index);
 $(elem).find("#fileUploadButton").attr("id",
 "fileUploadButton_" + index);
 $(elem).find("#fileUploadProgressComplete").attr("id",
 "fileUploadProgressComplete_" + index);

 // Attach a click event
 $(elem).find("#fileUploadButton_" + index).on("click",
 function () {
 uploadController.uploadFileInfo(index);
 }
);

 // Append this new HTML to the file upload area
 $("#fileUploadProgressArea").append(elem);

 // Display the file name
 $("#fileUploadLabel" + "_" + index).text(fileToUpload.name);
}

The uploadController Closure

Upload Multiple Files Asynchronously - Part 2 9
Copyright © 2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Besides modifying the id attributes, you also need to connect a click event to the
upload button within the template. Below is the code snippet from the
cloneProgressBarTempate() method that connects the click event on the newly
created button to the uploadFileInfo() method in the uploadController closure.

$(elem).find("#fileUploadButton_" + index).on("click",
 function () {
 uploadController.uploadFileInfo(index);
 }
);

uploadFileInfo Method
After the user fills in the title and description information, they click on the Upload
button. That button calls the uploadFileInfo() method and passes in the index
number associated with that button. Create a FormData object and append the
index number, the file upload object, the title, and description into this object. Once
this FormData object is created, pass that object and the current index number to
the postFile() method to be uploaded to the Web API method.

function uploadFileInfo(index) {
 // Create FormData to post to Web API
 var data = new FormData();
 data.append("fileIndex", fileObjects[index].index);
 data.append("fileUploadObject", fileObjects[index].uploadObject);
 data.append("fileTitle", $("#fileUploadTitle_" + index).val());
 data.append("fileDescription",
 $("#fileUploadDescription_" + index).val());

 // Post the form data
 postFile(data, index);
}

postFile() Method
The first thing the postFile() method does is to unhide the progress bar. It then
disables the title and description input controls, and the upload button. An Ajax call
is then made passing in the FormData object.
In the xhr function of the Ajax call you add an event listener so you can keep track
of the file upload progress. When the Web API sends a status of how much of the
file has been uploaded, this data is passed as argument e in the function of the
event listener. Pass this e argument and the index to the updateProgressBar()
method to update the correct progress element on the web page.

Upload Multiple Files Asynchronously - Part 2

10 Upload Multiple Files Asynchronously - Part 2
Copyright © 2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

function postFile(data, index) {
 // Display progress bar
 $("#fileUploadProgressBar_" + index)
 .parent().removeClass("hidden");

 // Disable controls
 $("#fileUploadTitle_" + index).prop("disabled", true);
 $("#fileUploadDescription_" + index).prop("disabled", true);
 $("#fileUploadButton_" + index).prop("disabled", true);

 // Change text on button while uploading
 $("#fileUploadButton_" + index).text("Uploading...");

 // Make the Ajax call
 $.ajax({
 url: UPLOAD_URL,
 type: 'POST',
 data: data,
 contentType: false,
 processData: false,
 xhr: function () {
 var req = $.ajaxSettings.xhr();
 if (req.upload) {
 // Setup event listener for progress returned from Web API
 req.upload.addEventListener('progress', function (e) {
 if (e.lengthComputable) {
 // Update the progress bar
 updateProgressBar(e, index);
 }
 }, false);
 }
 return req;
 },
 }).done(function (response) {
 console.log(response);
 }).fail(function (error) {
 console.log(error);
 });
}

updateProgressBar() Method
The updateProgressBar() method calculates the percentage of the data that has
been uploaded to the server. It uses this percentage value to set the value of the
progress bar element. This forces the browser to update the progress bar. Once the
percentage is greater than or equal to 100, set the progress bar value to 100 to
ensure it shows the file has been completely uploaded. Another label created in the
HTML template is made visible to display the text "File Uploaded Successfully".

The Web API Controller

Upload Multiple Files Asynchronously - Part 2 11
Copyright © 2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

function updateProgressBar(e, index) {
 // Calculate current percentage
 var percentage = (e.loaded * 100) / e.total;

 // Modify the progress bar
 $("#fileUploadProgressBar_" + index).val(percentage);

 // Are we done?
 if (percentage >= 100) {
 // Display completion
 $("#fileUploadProgressBar_" + index).val(100);
 $("#fileUploadProgressComplete_" + index).removeClass("hidden");
 $("#fileUploadButton_" + index).text("Uploaded");
 }
}

The Web API Controller
All the client-side code is in place, so you can create your Web API method to
upload your file now. If you are using Microsoft MVC, right mouse-click on the
Controllers folder and choose Add | Web API Controller Class (v2.1) from the
context-sensitive menu. Set the name to FileUploadController and click the OK
button. At the top of the file, remove all the using statements, and just make sure
you have the following four at the top.

Using System;
using System.IO;
using System.Web;
using System.Web.Http;

Remove all the methods within the FileUploadController class and add the following
method signature.

public class FileUploadController : ApiController
{
 [HttpPost]
 public int UploadFile()
 {
 }
}

Get the File Object
To retrieve the fileUploadObject from the FormData object you created in the client-
side code, use the Files[] property on the Request object as shown in the code

Upload Multiple Files Asynchronously - Part 2

12 Upload Multiple Files Asynchronously - Part 2
Copyright © 2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

below. This returns to you an object of the type HttpPostedFile. This object is the
.NET equivalent of the file object created by the browser.

HttpPostedFile fileToUpload =
 HttpContext.Current.Request.Files["fileUploadObject"];

You can retrieve the rest of the FormData elements you created in JavaScript using
the Form[] array.

string index = HttpContext.Current.Request.Form["fileIndex"];
string title = HttpContext.Current.Request.Form["fileTitle"];
string description =
 HttpContext.Current.Request.Form["fileDescription"];

Convert Input Stream into a Byte Array
The posted file contents are sent via an input stream, so you need to read that
stream and store the data into an array of bytes. The easiest method to get the
bytes of data is to copy into a MemoryStream object. Use the code shown below to
request the posted file object and copy the data into a byte array.

byte[] contents;

if (fileToUpload != null && fileToUpload.ContentLength > 0)
{
 // Get the uploaded file contents
 using (MemoryStream ms = new MemoryStream())
 {
 fileToUpload.InputStream.CopyTo(ms);
 ms.Position = 0;
 contents = ms.ToArray();
 }
}

File Object Properties
Just as the file object on the client had properties such as length and file name, so
does the HttpPostedFile object. It is useful to gather that data into an object. Instead
of creating a real class, for now, just build an anonymous type and store the data
from the HttpPostFile object into that anonymous type.

The Web API Controller

Upload Multiple Files Asynchronously - Part 2 13
Copyright © 2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

// Gather file information into anonymous type
var fileInfo = new
{
 ContentLength = fileToUpload.ContentLength,
 ContentType = fileToUpload.ContentType,
 FilePath = Path.GetDirectoryName(fileToUpload.FileName),
 FileName = Path.GetFileName(fileToUpload.FileName),
 Contents = contents
};

Once you have the contents of the file and the file name, store the file on your file
server. You can also store the index number, the title, and the description in another
file on your server. Ultimately, you would store this information in a table in a SQL
Server, but I will leave that for you to accomplish. The complete UploadFile()
method is shown in the code below.

Upload Multiple Files Asynchronously - Part 2

14 Upload Multiple Files Asynchronously - Part 2
Copyright © 2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

[HttpPost]
public int UploadFile()
{
 byte[] contents;

 // Retrieve file to upload and the rest of the FormData object
 HttpPostedFile fileToUpload =
 HttpContext.Current.Request.Files["fileUploadObject"];
 string index = HttpContext.Current.Request.Form["fileIndex"];
 string title = HttpContext.Current.Request.Form["fileTitle"];
 string description =
 HttpContext.Current.Request.Form["fileDescription"];

 if (fileToUpload != null && fileToUpload.ContentLength > 0)
 {
 // Get the uploaded file contents
 using (MemoryStream ms = new MemoryStream())
 {
 fileToUpload.InputStream.CopyTo(ms);
 ms.Position = 0;
 contents = ms.ToArray();
 }

 // Gather file information into anonymous type
 var fileInfo = new
 {
 ContentLength = fileToUpload.ContentLength,
 ContentType = fileToUpload.ContentType,
 FilePath = Path.GetDirectoryName(fileToUpload.FileName),
 FileName = Path.GetFileName(fileToUpload.FileName),
 Contents = contents
 };

 // Write File to Server File System
 var file = HttpContext.Current.Server.MapPath("/UploadedFiles/"
 + fileInfo.FileName);
 File.WriteAllBytes(file, contents);

 // Write a description file
 File.WriteAllText(file + ".txt", "Index: " + index.ToString()
 + Environment.NewLine
 + "Title: '" + title + "'"
 + Environment.NewLine
 + "Description: '" + description + "'");
 }

 return 0;
}

Summary

Upload Multiple Files Asynchronously - Part 2 15
Copyright © 2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Summary
In this blog post, you learned to upload multiple files using JavaScript, jQuery and
Microsoft ASP.NET Web API. There is not a lot of code required to perform the
actual upload, but adding extra input fields such as a title, description, and a
progress bar for each file selected requires you to get a little creative. A template of
HTML in a <script> tag is an ideal method to clone HTML for each file the user
selects. Once cloned, rename the id attributes so each has a unique value. Each
cloned HTML can be appended below the file input area so the user can add a title
and a description to each file. Use the FormData object in JavaScript to build an
object with the title and description input to send to your Web API call.

Source Code
NOTE: You can download the sample code for this article by visiting my website at
http://www.pdsa.com/downloads. Select “Fairway/PDSA Blog”, then select “Upload
Multiple Files Asynchronously - Part 2” from the dropdown list.

http://www.pdsa.com/downloads

	Upload Multiple Files Asynchronously - Part 2
	Create HTML Page for Uploading Files
	Add File Input Element
	Add Area to Gather User Input
	Add Template for Each Progress Bar
	Add jQuery and Bootstrap

	The uploadController Closure
	addFiles() Method
	cloneProgressBarTemplate() Method
	uploadFileInfo Method
	postFile() Method
	updateProgressBar() Method

	The Web API Controller
	Get the File Object
	Convert Input Stream into a Byte Array
	File Object Properties

	Summary
	Source Code

