
Getting Started with PouchDB -
Part 3

In the last two blog posts, you have been introduced to the PouchDB NoSQL
database. You learned to create a new database, modify documents within that
database, and retrieve documents using the allDocs(). Now that you have inserted
several documents into your PouchDB database, you might wish to retrieve
documents based on data in fields other than the _id property. In this third part of
our on-going blog posts on PouchDB, you learn to use the find() plug-in to perform
queries on any property in your documents.

Mango Queries
The pouchdb-find plug-in can be downloaded at https://bit.ly/2s1AoYp. The find()
method, also known as Mango, is a structured query mechanism allowing you to
create secondary indexes on which you perform searches. This method is useful for
answering questions like; find all documents where the lastName is equal to 'sheriff',
or cost is greater than 75. Download the pouchdb.find plug-in and add a link to the
pouchdb-find.js file. This should be listed after the link to the pouchdb-xxxxx.js file.

<script src="../Scripts/pouchdb-6.4.3.min.js"></script>
<script src="../Scripts/pouchdb.find.js"></script>

Create Indexes
You don't have to create indexes on the field(s) you wish to query upon, but if you
don't, a complete scan of all documents is done. Depending on how many
documents are in your database, this can be quite an expensive (and slow)
operation. If you know the most common fields you are going to be querying on,
create an index(es) on those fields. The code sample shown below, illustrates how
to create an index on the lastName property and another index on the cost property.

https://bit.ly/2s1AoYp

Getting Started with PouchDB

2 Getting Started with PouchDB
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

function createIndexes() {
 // Create index on last Name
 db.createIndex({
 index: {
 fields: ['lastName']
 }
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });

 // Create index on cost
 db.createIndex({
 index: {
 fields: ['cost']
 }
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

Notice that the fields property is an array of property names. You may specify a set
of fields to index on. For example, you might wish to index first on the lastName
field, then on the firstName field.

Error on Sort if No Index
If you are attempting to sort on a field that has not been indexed, you receive an
error from PouchDB. If the field you are using in the selector does not have an
index, then the default index (the _id field) is used, and a full document scan is
performed. PouchDB does not have the ability to sort the data unless there is an
index on that field, thus, you receive an error.

function showError() {
 // NOTE: Create an index on the sort field or you get an error
 db.find({
 selector: { firstName: 'Paul' },
 sort: ['firstName']
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

Warning if no Index

Getting Started with PouchDB 3
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

The error message you receive by running the function above is.

Error: Cannot sort on field(s) "firstName" when using the default
index

Warning if no Index
If you use a field(s) in the selector and no index is available, a complete document
scan is performed in the database. The data is returned with the appropriate
documents selected, however, you receive a warning that no matching index is
found. You can then decide if you wish to create one.

function showWarning() {
// NOTE: You get an error if you use a property name in the
'selector' that is not indexed
 db.find({
 selector: { firstName: 'Paul' }
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

The response object you receive looks like the following.

{
 "docs": [
 {
 "firstName": "Paul",
 "lastName": "Sheriff",
 "docType": "technician",
 "_id": "psheriff",
 "_rev": "1-36a6815e79f54819bc0b4ee3bd435aa1"
 }
],
 "warning": "no matching index found, create an index to optimize
query time"
}

Getting Started with PouchDB

4 Getting Started with PouchDB
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Find Last Name
You created an index on the lastName field earlier. You can now use that index by
specifying lastName as one of the fields in your selector property. You may further
qualify what is returned by including the fields property. This property is an array of
property names from your document you wish to return from this query. You may
include the sort property if you want, but it really is unnecessary as when an index is
used, the documents are returned by the index order anyway.

function findLastName() {
 db.find({
 selector: { lastName: 'Sheriff' },
 fields: ['_id', 'firstName', 'lastName'],
 sort: ['lastName']
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

The result from the query above looks like the following.

{
 "docs": [
 {
 "_id": "msheriff",
 "firstName": "Madison",
 "lastName": "Sheriff"
 },
 {
 "_id": "psheriff",
 "firstName": "Paul",
 "lastName": "Sheriff"
 }
]
}

Find Multiple Last Names
There are many selector operators you may use instead of just searching for an
exact match. Selector operators are prefixed with a dollar sign, and include the
following: $eq, $gt, $gte, $lt, $lte, $in. For a complete list of selector operators, visit
https://pouchdb.com/api.html#create_index.

https://pouchdb.com/api.html#create_index

Find Multiple Last Names

Getting Started with PouchDB 5
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Create a function that uses the $in operator to locate more than one last name
within your documents. The code below shows searching for last names that match
either 'Sheriff' or 'Jones'.

function findLastNames() {
 pouchDBSamplesCommon.hideMessageAreas();
 db.find({
 selector: {
 lastName: { $in: ['Sheriff', 'Jones'] }
 },
 fields: ['_id', 'firstName', 'lastName']
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

The return result from the above query looks like the following. Notice that this
selector operator does not use the index based on the last name field. Certain types
of operators are not always able to use indexes; $in, $or and $regex are a few of
them that can't.

{
 "docs": [
 {
 "_id": "bjones",
 "firstName": "Bruce",
 "lastName": "Jones"
 },
 {
 "_id": "msheriff",
 "firstName": "Madison",
 "lastName": "Sheriff"
 },
 {
 "_id": "psheriff",
 "firstName": "Paul",
 "lastName": "Sheriff"
 }
],
 "warning": "no matching index found, create an index to optimize
query time"
}

Getting Started with PouchDB

6 Getting Started with PouchDB
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Find Cost Greater than 75
Another useful selector operator is greater than ($gt). You created an index earlier
on the cost property of the documents that have docType of 'service'. Use the
following code to find all services that have a cost greater than 75.

function greaterThan() {
 pouchDBSamplesCommon.hideMessageAreas();
 db.find({
 selector: { cost: { $gt: 75 } },
 fields: ['_id', 'cost']
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

Search on Two Fields
You are not restricted to just indexing on one field. You may include two or more
fields in the index fields property. In the selector property, you may now specify two
fields to match upon. In the sample code below, you are querying the documents to
find where the doctype is equal to 'service' and the cost is greater than 75.

function searchTwoFields() {
 // Create index on two fields
 db.createIndex({
 index: {
 fields: ['docType', 'cost']
 }
 }).then(function (response) {
 // Search on two fields
 return db.find({
 selector: {
 docType: 'service',
 cost: { $gt: 75 }
 },
 fields: ['_id', 'cost']
 });
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

Summary

Getting Started with PouchDB 7
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Summary
In this third part of our series on PouchDB, you learned to use the find() method.
This method is a plug-in to PouchDB, so you must download it separately. The
find() method allows you to search on fields other than the _id field in your
documents. Be sure to add an index for the field(s) you with to search upon, as
doing so, increases the performance of your search. In the next blog post, you learn
to use the query() method and map functions.

Sample Code
You can download the complete sample code at my website.
http://www.pdsa.com/downloads. Choose "PDSA/Fairway Blog", then "Getting
Started with PouchDB - Part 3" from the drop-down.

http://www.pdsa.com/downloads

	Getting Started with PouchDB - Part 3
	Mango Queries
	Create Indexes
	Error on Sort if No Index
	Warning if no Index
	Find Last Name
	Find Multiple Last Names
	Find Cost Greater than 75
	Search on Two Fields
	Summary
	Sample Code

