

Creating Checkboxes using Bootstrap
and MVC

The normal HTML check box just does not look good. Yes, bootstrap has a
CSS class that will attempt to at least let it render consistently across
browsers, but it still is just the default HTML look. In addition, trying to hit a
check box on a mobile phone can sometimes be a little challenging.
In an MVC project we are doing for a client, they wanted the check boxes to
look more like buttons. Since we were already using bootstrap for this project
we were able to create our own check boxes using the “btn-group” class
from bootstrap. Let’s walk through how we created these.

Normal Check Boxes
As most of you know, creating normal check boxes in MVC is easy to do with
the CheckBox HTML helper class. The code below is what you write for
creating standard HTML check boxes in MVC:

Using Friendly URLs in Web Forms

2 Using Friendly URLs in Web Forms
Copyright © 2014 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

@using (Html.BeginForm())
{
 <div>
 @Html.CheckBox("IsJazz") Jazz
 @Html.CheckBox("IsCountry") Country
 @Html.CheckBox("IsRock") Rock
 </div>
}

Bootstrap Check Boxes
With bootstrap you add a <div> with a class of either “checkbox” or
“checkbox-inline” around your check boxes. You also add a <label> element
around the check boxes in order to use bootstrap’s styling of labels. Normally
this gives you a bolder font for the actual text of the check box.

@using (Html.BeginForm())
{
 <div class="form-group">
 <div class="checkbox-inline">
 <label>
 @Html.CheckBox("IsJazz") Jazz
 </label>
 </div>
 <div class="checkbox-inline">
 <label>
 @Html.CheckBox("IsCountry") Country
 </label>
 </div>
 <div class="checkbox-inline">
 <label>
 @Html.CheckBox("IsRock") Rock
 </label>
 </div>
 </div>
}

Both of the above pieces of code will produce some output that looks like the
check boxes shown in Figure 1.

 Use Button Groups

Using Friendly URLs in Web Forms 3
Copyright © 2014 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Figure 1: Normal HTML Check boxes

Use Button Groups
One of the classes that bootstrap supplies is “btn-group”. This class combined
with the data-toggle=”buttons” gives you the ability to create check boxes that
look like standard buttons but will toggle when pressed. What is nice about
check boxes expressed this way is you can really tell that the label is a part of
the check box. When you click on one of the buttons you will see it change
color. In addition, these buttons are much easier to press on a mobile device.

Using Friendly URLs in Web Forms

4 Using Friendly URLs in Web Forms
Copyright © 2014 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

@using (Html.BeginForm())
{
 <div class="form-group">
 <div class="btn-group" data-toggle="buttons">
 <label class="btn btn-primary">
 @Html.CheckBox("IsJazz") Jazz
 </label>
 <label class="btn btn-primary active">
 @Html.CheckBox("IsCountry") Country
 </label>
 <label class="btn btn-primary">
 @Html.CheckBox("IsRock") Rock
 </label>
 </div>
 </div>
}

Note the use of the “active” class on the Country check box. This is what
makes this one selected when you display the screen (see Figure 2).

Figure 2: Check boxes displayed as button groups.

 Add Glyphs

Using Friendly URLs in Web Forms 5
Copyright © 2014 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Add Glyphs
Users are used to seeing a check mark or an empty box next to the label for
check box controls. So, you should add those into your design. Use the built-
in glyphs in bootstrap to display a check or an empty box. Below is the code
to do this:

@using (Html.BeginForm())
{
 <div class="form-group">
 <div class="btn-group" data-toggle="buttons">
 <label class="btn btn-primary">

 @Html.CheckBox("IsJazz", true) Jazz
 </label>
 <label class="btn btn-primary active">

 @Html.CheckBox("IsCountry") Country
 </label>
 <label class="btn btn-primary">

 @Html.CheckBox("IsRock", true) Rock
 </label>
 </div>
 </div>
}

Take a look at the Country check box. There are two modifications to this
check box. First, you add the “active” class on the <label> element. This
makes it a different color from the other two check boxes. You also change
the glyph in the element from “glyphicon-unchecked” to “glyphicon-
ok-circle” to give it a check mark within a circle.
Feel free to use whatever icons you want. Font Awesome
(www.fontawesome.io) has a lot of different CSS glyphs that you can use
instead of the limited ones in bootstrap.

http://www.fontawesome.io/

Using Friendly URLs in Web Forms

6 Using Friendly URLs in Web Forms
Copyright © 2014 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 3: Add glyphs to make the buttons look more like check boxes.

Change Glyphs Dynamically using
jQuery

When the user clicks on a check box you want to toggle the glyph. Luckily
when you click on the check box, bootstrap takes care of toggling the “active”
class on the <label> elements for you. All you need to do is to write some
jQuery to toggle the glyphs. Below is the jQuery code you add at the bottom
of the .cshtml MVC page to toggle the glyphs.

 Summary

Using Friendly URLs in Web Forms 7
Copyright © 2014 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

@section scripts
{
 <script>
 $(document).ready(function () {
 // Connect to 'change' event in order to toggle glyphs
 $("[type='checkbox']").change(function () {
 if ($(this).prop('checked')) {
 $(this).prev().addClass('glyphicon-ok-circle');
 $(this).prev().removeClass('glyphicon-unchecked');
 }
 else {
 $(this).prev().removeClass('glyphicon-ok-circle');
 $(this).prev().addClass('glyphicon-unchecked');
 }
 });
 });
 </script>
}

This jQuery is fairly simple to understand. When the user changes the check
box you determine if the check box is checked or unchecked. Based on this
setting you either add or remove the appropriate classes from the
element that is just prior to the check box control.

Summary
In this blog post you learned how to present check boxes just a little
differently. While it is not necessary to do this, I like the way these check
boxes look and feel. With just a little use of built-in bootstrap CSS and jQuery
you can get something that looks a little different from the traditional web look.

	Creating Checkboxes using Bootstrap and MVC
	Normal Check Boxes
	Bootstrap Check Boxes
	Use Button Groups
	Add Glyphs
	Change Glyphs Dynamically using jQuery
	Summary

