
Upload Multiple Files
Asynchronously - Part 1

In this blog post, you are going to learn how to use jQuery, JavaScript, Ajax, and a
Web API method to upload multiple files asynchronously. As each file is uploaded, a
progress bar is displayed to indicate the progress for each file, as shown in Figure
1. In order to accomplish this, you learn to clone an HTML template for each file
selected to upload. Yes, you can find free, open-source libraries to help you do this,
but it is always good to know how these things work under the hood.

Figure 1: Provide feedback to the user when uploading multiple files.

Upload Multiple Files Asynchronously - Part 1

2 Upload Multiple Files Asynchronously - Part 1
Copyright © 2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Working with the File Input Element
When you add an input element and set the type attribute set to "file", you may add
the attribute “multiple” to allow the user to select more than one file at a time for
uploading.

<input type="file" multiple="multiple" />

When you use the file input element, your browser may display this input like the
following. However, the look and feel will be different on each browser.

If you use the Bootstrap CSS framework, you can make this input look consistent
across browsers, as shown below.

For more information on how to style the file input element, read my previous blog
post at https://bit.ly/2ZWv4Ff.

Create HTML Page for Uploading Files
To build this sample, I am going to use Visual Studio, jQuery, Bootstrap 3.x and the
Microsoft ASP.NET Web API. However, feel free to use whatever tools you want. All
the front-end code is generic and can be used with any JavaScript framework.
While I am using Microsoft's ASP.NET Web API, you should be able to adapt the
code to any Web API framework with ease.
To start creating this sample, bring up Visual Studio and select ASP.NET Web
Application (.NET Framework) project. Choose the Empty template but select the
Web API option. Using the NuGet Package Manager, add Bootstrap 3.4.x to your
project. Make sure you are installing Bootstrap 3.4.x and not Bootstrap 4.x.
Installing Bootstrap 3.4.x also installs jQuery. After installing these, click on the
Updates tab in the NuGet Package Manager window and update any packages,
except Bootstrap.
Add an index.html page in the root of your project. Locate the <head> element and
modify it to look like the following code.

https://bit.ly/2ZWv4Ff

Create HTML Page for Uploading Files

Upload Multiple Files Asynchronously - Part 1 3
Copyright © 2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

<head>
 <title>Upload Multiple Files Sample</title>
 <meta charset="utf-8" />
 <meta name="viewport"
 content="width=device-width, initial-scale=1" />

 <link href="/Content/bootstrap.min.css" rel="stylesheet" />
 <link href="/Content/site.css" rel="stylesheet" />
</head>

Right mouse-click on the Content folder and add a new style sheet named
site.css. Add the following rule in the site.css file.

.progress-extra-space {
 margin-top: 1em;
}

Back in the index.html page, just below the <body> element add a <div
class="container"> element. This is the main wrapper for Bootstrap to contain all
other Bootstrap CSS classes.

<div class="container">
 <h1>Upload Multiple Files Sample</h1>

</div>

Add File Input Element
Just below the <h1> element, add another <div> with the class attribute set to
"form-group btn btn-primary". These Bootstrap classes style the file input element to
look like a Bootstrap button instead of a normal HTML button. Add a label and an
input type within the div. Notice the input element has the multiple attribute set. In
addition, it has the style attribute set to "display:none;". This allows the Bootstrap
CSS classes to style the file input element. The onchange event calls a method
named in a closure "uploadController.uploadFiles()". You are going to add this
closure and method a little later in this blog post.

<div class="form-group btn btn-primary">
 <label for="fileUploadControl">Select Files to Upload</label>
 <input type="file"
 id="fileUploadControl"
 onchange="uploadController.uploadFiles();"
 multiple="multiple"
 style="display:none;" />
</div>

Upload Multiple Files Asynchronously - Part 1

4 Upload Multiple Files Asynchronously - Part 1
Copyright © 2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Add Area to Display the File Upload Progress
Below the div that contains the file input element, add another div with an id
attribute set to "fileUploadProgressArea". Display a label and a progress bar for
each file the user selects to upload within this div.

<!-- BEGIN: File Upload Progress Area -->
<div id="fileUploadProgressArea">
 <!-- This area is where each file to be uploaded is displayed -->
</div>
<!-- END: File Upload Progress Area -->

Add Template for each Progress Bar
Below the file upload progress area, add a <script> tag. Set the id attribute to
"fileUploadProgressTemplate" for this script tag. Also, set the type attribute to
"text/html". This lets the browser know that this script tag does not contain any
executable JavaScript, but plain text that should be ignored. The HTML contained
within this script tag is used to display the file name being uploaded and the
progress bar as shown in Figure 1.

<!-- BEGIN: Display File Upload Progress Template -->
<script id="fileUploadProgressTemplate" type="text/html">
 <div class="row progress-extra-space">
 <div class="col-md-3">
 <label id="fileUploadLabel" class="text-info"></label>
 </div>
 <div class="col-md-9">
 <div class="progress">
 <progress id="fileUploadProgressBar"
 class="progress-bar progress-bar-success"
 value="0"
 max="100"
 style="width: 100%">
 </progress>
 </div>
 </div>
 </div>
</script>
<!-- END: Display File Upload Progress Template -->

You are going to write some JavaScript/jQuery code to clone the HTML within this
script tag. Once cloned, you are going to insert the cloned HTML into the div tag
you created earlier with the id of "fileUploadProgressArea".

The uploadController Closure

Upload Multiple Files Asynchronously - Part 1 5
Copyright © 2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Add jQuery and Bootstrap
You are going to need to include references to the jQuery and Bootstrap JS files on
your page. Add two more script tags to reference jQuery and Bootstrap from within
the Scripts folder where they are installed by NuGet.

<script src="/Scripts/jquery-3.4.1.min.js"></script>
<script src="/Scripts/bootstrap.min.js"></script>

Make sure you check to see what version of jQuery is loaded after you update all
the packages using the NuGet Package Manager. You may need to change the
version of jQuery listed above. Also, strictly speaking, Bootstrap does not need to
be included on this page for this sample, but I like to include it just in case I use
some features of Bootstrap later.

The uploadController Closure
A best practice in JavaScript is to create closures around code. The
uploadController closure you attached earlier to the onchange event of the file input
element is what you are going to write now. To build this closure, add a new
<script> tag and add the closure and the stubs of the various methods you are
going to write to upload files, display the file name, and show the progress bar.

Upload Multiple Files Asynchronously - Part 1

6 Upload Multiple Files Asynchronously - Part 1
Copyright © 2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

<script>
 var uploadController = (function () {
 /*************************
 * Private Functions
 *************************/
 function uploadFiles() {
 }

 function cloneProgressBarTemplate(fileToUpload, index) {
 }

 function postFile(data, index) {
 }

 function updateProgressBar(e, index) {
 }

 /*************************
 * Public Functions
 *************************/
 return {
 uploadFiles: uploadFiles
 }
 })();
</script>

The uploadFiles() method is the only one that is exposed from this closure. The
others are called by the uploadFiles() method. Let's build each one of these
methods now.

uploadFiles() Method
Once the user selects one or more files using the file input element, the onchange
event is fired. That event calls the uploadFiles() method. The first thing to do is to
grab the collection of files by accessing the files method from the file input element
that has the id "fileUploadControl".

The uploadController Closure

Upload Multiple Files Asynchronously - Part 1 7
Copyright © 2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

function uploadFiles() {
 // Get collection of files selected by user
 var files = $("#fileUploadControl")[0].files;

 // Loop through collection of files selected by user
 for (var index = 0; index < files.length; index ++) {
 // Create new <div> for displaying file name and progress bar
 cloneProgressBarTemplate(files[index], index);

 // Create FormData to post to Web API
 var data = new FormData();
 data.append("fileUploadObject", files[index]);

 // Post the form data
 postFile(data, index);
 }
}

The file object, file[index] has properties such as name, size, type, and
lastModifiedDate. It is this object that is passed to the Web API method as a file
object to be uploaded.
The first thing you do with the file object is pass it to the
cloneProgressBarTemplate() method to build a label and a progress bar for the
current file object to upload. Next, build a FormData object and append the file
object to be uploaded. Set the name of this file object to "fileUploadObject". This
name is important when you write your Web API method call as it uses this name to
retrieve the file object. Finally, the postFile() method is called to make the Ajax call
to the Web API and post the file data to the Web API method.

cloneProgressBarTemplate() Method
As you can see in Figure 1, the file name and a progress bar are displayed for each
file selected by the user. The cloneProgressBarTemplate() method is responsible
for creating a label and a progress element. Instead of writing JavaScript or jQuery
code to create each of the elements required for the label and progress element,
you created the complete HTML within the <script> tag with the id attribute set to
"fileUploadProgressTemplate". It is much easier to layout the HTML within an HTML
editor than it is to write the same code using JavaScript.
To create a new DOM element from the HTML within the <script> tag, use the
following line of code.

var elem = $($("#fileUploadProgressTemplate").html()).clone();

The variable elem is now a new DOM object and you can append that where ever
you wish using the append() method. For example, you created an empty <div> tag
earlier in this blog post with the id attribute set to "fileUploadProgressArea". Use the
following line of code to insert this newly cloned DOM object into that <div> tag.

Upload Multiple Files Asynchronously - Part 1

8 Upload Multiple Files Asynchronously - Part 1
Copyright © 2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

$("#fileUploadProgressArea").append(elem);

If you only needed a single DOM object for a single file, this is all the code you
would need. However, you can have multiple file objects selected by the user, so
you need to build multiple DOM objects. As you know, you are not allowed to have
multiple HTML elements with the same id attribute value. Therefore, you pass in the
index value of each file along with the file object. You use this index number to
create a unique id attribute value after you have cloned the HTML.
There are two HTML elements within the <script> tag you are cloning that have id
attributes; "fileUploadLabel" and "fileUploadProgressBar". You are going to use the
find() method on the new DOM element to locate these elements. You then set the
id attribute to the name of the element plus an underscore (_) plus the index
number. Thus, the first file passed to this method from the uploadFiles() method
passes a zero (0) in the index, so the id attributes are "fileUploadLabel_0" and
"fileUploadProgressBar_0" respectively. The second time through, the id attributes
are "fileUploadLabel_1" and "fileUploadProgressBar_1", and so on.

function cloneProgressBarTemplate(fileToUpload, index) {
 // Clone the HTML from the template
 var elem = $($("#fileUploadProgressTemplate").html()).clone();

 // Replace the 'id' attributes with current index number
 $(elem).find("#fileUploadLabel").attr("id",
 "fileUploadLabel_" + index);
 $(elem).find("#fileUploadProgressBar").attr("id",
 "fileUploadProgressBar_" + index);

 // Append this new HTML to the file upload area
 $("#fileUploadProgressArea").append(elem);

 // Display the file name
 $("#fileUploadLabel_" + index).text(fileToUpload.name);
}

postFile() Method
After you have displayed the file name in the label, and you have a progress
element on the page with unique id's you are ready to post the file to the Web API.
You must pass the FormData object to the postFile() method, but it is very important
you pass the index number of the current file being processed. This number is what
is used to update the appropriate progress element on the page.
You can see in the xhr function of the Ajax call you setup an event listener for the
progress of the file upload. When the Web API sends a status of how much of the
file has been uploaded, this data is passed as argument e in the function of the
event listener. Pass this e argument and the index to the updateProgressBar()
method to update the correct progress element on the web page.

The uploadController Closure

Upload Multiple Files Asynchronously - Part 1 9
Copyright © 2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

function postFile(data, index) {
 // Make the Ajax call
 $.ajax({
 url: "/api/FileUpload/UploadFile",
 type: 'POST',
 data: data,
 contentType: false,
 processData: false,
 xhr: function () {
 var req = $.ajaxSettings.xhr();
 if (req.upload) {
 // Setup event listener for any progress info
 // returned from the Web API
 req.upload.addEventListener('progress', function (e) {
 if (e.lengthComputable) {
 // Update the progress bar
 updateProgressBar(e, index);
 }
 }, false);
 }
 return req;
 },
 }).done(function (response) {
 console.log(response);
 }).fail(function (error) {
 console.log(error);
 });
}

updateProgressBar() Method
The updateProgressBar() method calculates the percentage of the data that has
been uploaded to the server. It uses this percentage value to set the value of the
progress bar element. This forces the browser to update the progress bar. Once the
percentage is greater than or equal to 100, set the progress bar value to 100 to
ensure it shows the file has been completely uploaded. If you want, you can add
another label below the progress bar and once the data is completely uploaded, you
can display that label with some text such as "File Upload Complete"

function updateProgressBar(e, index) {
 // Calculate current percentage
 var percentage = (e.loaded * 100) / e.total;

 // Modify the progress bar
 $("#fileUploadProgressBar_" + index).val(percentage);

 // Are we done?
 if (percentage >= 100) {
 $("#fileUploadProgressBar_" + index).val(100);
 }
}

Upload Multiple Files Asynchronously - Part 1

10 Upload Multiple Files Asynchronously - Part 1
Copyright © 2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

The Web API Controller
All the client-side code is in place, so you can create your Web API method to
upload your file to now. If you are using Microsoft MVC, right mouse-click on the
Controllers folder and choose Add | Web API Controller Class (v2.1) from the
context-sensitive menu. Set the name to FileUploadController and click the OK
button. At the top of the file, remove all the using statements, and just make sure
you have the following three at the top.

using System.IO;
using System.Web;
using System.Web.Http;

Remove all the methods within the FileUploadController class and add the following
method signature.

public class FileUploadController : ApiController
{
 [HttpPost]
 public int UploadFile()
 {
 }
}

Get the File Object
To retrieve the fileUploadObject from the FormData object you created in the client-
side code, use the Files[] property on the Request object as shown in the code
below. This returns to you an object of the type HttpPostedFile. This object is the
.NET equivalent of the file object created by the browser.

HttpPostedFile fileToUpload =
 HttpContext.Current.Request.Files["fileUploadObject"];

Convert Input Stream into a Byte Array
The posted file contents are sent via an input stream, so you need to read that
stream and store the data into an array of bytes. The easiest method to get the
bytes of data is to copy into a MemoryStream object. Use the code shown below to
request the posted file object and copy the data into a byte array.

The Web API Controller

Upload Multiple Files Asynchronously - Part 1 11
Copyright © 2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

byte[] contents;

HttpPostedFile fileToUpload =
 HttpContext.Current.Request.Files["fileUploadObject"];

if (fileToUpload != null && fileToUpload.ContentLength > 0)
{
 // Get the uploaded file contents
 using (MemoryStream ms = new MemoryStream())
 {
 fileToUpload.InputStream.CopyTo(ms);
 ms.Position = 0;
 contents = ms.ToArray();
 }
}

File Object Properties
Just as the file object on the client had properties such as length and file name, so
does the HttpPostedFile object. It is useful to gather that data into an object. Instead
of creating a real class, for now, just build an anonymous type and store the data
from the HttpPostFile object into that anonymous type.

// Gather file information into anonymous type
var fileInfo = new
{
 ContentLength = fileToUpload.ContentLength,
 ContentType = fileToUpload.ContentType,
 FilePath = Path.GetDirectoryName(fileToUpload.FileName),
 FileName = Path.GetFileName(fileToUpload.FileName),
 Contents = contents
};

Once you have the contents of the file and the file name, store the file on your file
server. The complete UploadFile() method is shown in the code below.

Upload Multiple Files Asynchronously - Part 1

12 Upload Multiple Files Asynchronously - Part 1
Copyright © 2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

public class FileUploadController : ApiController
{
 [HttpPost]
 public int UploadFile()
 {
 byte[] contents;

 // Retrieve file to upload
 HttpPostedFile fileToUpload =
 HttpContext.Current.Request.Files["fileUploadObject"];

 if (fileToUpload != null && fileToUpload.ContentLength > 0)
 {
 // Get the uploaded file contents
 using (MemoryStream ms = new MemoryStream())
 {
 fileToUpload.InputStream.CopyTo(ms);
 ms.Position = 0;
 contents = ms.ToArray();
 }

 // Gather file information into anonymous type
 var fileInfo = new
 {
 ContentLength = fileToUpload.ContentLength,
 ContentType = fileToUpload.ContentType,
 FilePath = Path.GetDirectoryName(fileToUpload.FileName),
 FileName = Path.GetFileName(fileToUpload.FileName),
 Contents = contents
 };

 // Write File to Server File System
 var file = HttpContext.Current.Server
 .MapPath("/UploadedFiles/" + fileInfo.FileName);
 File.WriteAllBytes(file, contents);
 }

 return 0;
 }
}

Summary
In this blog post, you learned to upload multiple files using JavaScript, jQuery, and
Microsoft ASP.NET Web API. There is not a lot of code required to perform the
actual upload but adding a label and a progress bar for each file selected requires
you to get a little creative. Using a template of HTML in a <script> tag is a nice way
to clone HTML and place it into another section of your HTML page. It is much
easier to do this than to write HTML code in your JavaScript.

Source Code

Upload Multiple Files Asynchronously - Part 1 13
Copyright © 2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Source Code
NOTE: You can download the sample code for this article by visiting my website at
http://www.pdsa.com/downloads. Select “Fairway/PDSA Blog,” then select “Upload
Multiple Files Asynchronously - Part 1” from the dropdown list.

http://www.pdsa.com/downloads

	Upload Multiple Files Asynchronously - Part 1
	Working with the File Input Element
	Create HTML Page for Uploading Files
	Add File Input Element
	Add Area to Display the File Upload Progress
	Add Template for each Progress Bar
	Add jQuery and Bootstrap

	The uploadController Closure
	uploadFiles() Method
	cloneProgressBarTemplate() Method
	postFile() Method
	updateProgressBar() Method

	The Web API Controller
	Get the File Object
	Convert Input Stream into a Byte Array
	File Object Properties

	Summary
	Source Code

