
Getting Started with PouchDB -
Part 2

In the last blog post, you learned to insert, update, delete and read single
documents in a PouchDB database. Let's now look at how to perform multi-
document inserts and reads.

Bulk Operations
There are a few different methods you can invoke to work with multiple records. The
table below summarizes each of the methods available through the PouchDB API.

Method Description

bulkDocs() Create, update or delete multiple documents.

allDocs Retrieve multiple documents sorted by _id field. You may also set a range of _id
values to retrieve.

bulkGet() Supply a set of _id and _rev values, and this method returns the documents
associated with each.

Bulk Insert
To insert a set of documents into the database at one time, use the bulkDocs()
method. Create an array of documents you wish to insert, and pass this array to the
bulkDocs() method. The code below shows inserting a set of user documents and a
set of service documents. The result from this insert of multiple documents is an
array of JSON documents with three properties, "ok", "id" and "rev". The ok property
has a 'true' value, the id has the original _id value you specified, and the rev
property has the _rev field generated by PouchDB.

Getting Started with PouchDB

2 Getting Started with PouchDB
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

function addMultipleDocs() {
 db.bulkDocs([
 {
 _id: 'psheriff',
 firstName: 'Paul',
 lastName: 'Sheriff',
 docType: 'technician'
 },
 {
 _id: 'bjones',
 firstName: 'Bruce',
 lastName: 'Jones',
 docType: 'technician'
 },
 {
 _id: 'jkuhn',
 firstName: 'John',
 lastName: 'Kuhn',
 docType: 'technician'
 },
 {
 _id: 'msheriff',
 firstName: 'Madison',
 lastName: 'Sheriff',
 docType: 'technician'
 },
 {
 _id: 'mshane',
 firstName: 'Molly',
 lastName: 'Shane',
 docType: 'technician'
 },
 {
 _id: 'Carpentry',
 cost: 100,
 docType: 'service'
 },
 {
 _id: 'Concrete',
 cost: 75,
 docType: 'service'
 },
 {
 _id: 'Yard work',
 cost: 25,
 docType: 'service'
 },
 {
 _id: 'Plumbing',
 cost: 75,
 docType: 'service'
 },
 {
 _id: 'Electrical',
 cost: 85,
 docType: 'service'

Bulk Insert

Getting Started with PouchDB 3
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

 }
]).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 pouchDBSamplesCommon.displayMessage("Multiple documents
added.");
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

After you run the above code, a response is returned that looks like the following:

[
 {
 "ok": true,
 "id": "psheriff",
 "rev": "1-3889989f75da4924a14e6551b8c8b4f0"
 },
 {
 "ok": true,
 "id": "bjones",
 "rev": "1-6959354560114b3aab4506af1f6ff89b"
 },
 {
 "ok": true,
 "id": "jkuhn",
 "rev": "1-a90aa8c09b514d4ba122643348e83f92"
 },
 ... // MORE DOCS HERE
]

If, while inserting new documents, any of the _id values are duplicated, an error
response document is returned as shown below.

[
 {
 "status": 409,
 "name": "conflict",
 "message": "Document update conflict",
 "error": true,
 "id": "psheriff"
 },
 ... // MORE DOCS HERE
]

The error response document contains different properties from the success
response. The status property is set to a HTTP status code, which in this case a
409. The name property is set to a short description of the HTTP status code, which
in this case is 'conflict'. A message property reports a description of what PouchDB
says what went wrong. The error property is always set to true". The id property is
set to the document _id property that was in error.

Getting Started with PouchDB

4 Getting Started with PouchDB
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Bulk Update
If you wish to delete or update a set of documents, pass an array of JSON objects
to the bulkDocs() method. Each document in the array needs the _id and _rev
properties set to valid values. Be sure to include the complete document to update
or it will only store the specific properties you include.

db.bulkDocs([
 {
 _id: 'psheriff',
 _rev: '1-bfe5495126ec488c8a707b50afb49bfe',
 firstName: 'Paul',
 lastName: 'Sheriff-CHANGED',
 docType: 'technician'
 },
 {
 _id: 'bjones',
 _rev: '1-65bfb049dbdc440bba314626cd17cbf5',
 firstName: 'Bruce',
 lastName: 'Jones-CHANGED ',
 docType: 'technician'
 }
]).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 pouchDBSamplesCommon.displayMessage("Multiple documents
updated.");
}).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
});

Bulk Delete
To delete a set of documents, pass in an array of JSON objects with the _id and
_rev properties set, and include a property named _deleted and set its value to true.

allDocs() Method

Getting Started with PouchDB 5
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

db.bulkDocs([
 {
 _id: 'psheriff',
 _rev: '1-bfe5495126ec488c8a707b50afb49bfe',
 _deleted: true
 },
 {
 _id: 'bjones',
 _rev: '1-65bfb049dbdc440bba314626cd17cbf5',
 _deleted: true
 }
]).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 pouchDBSamplesCommon.displayMessage("Multiple documents
deleted.");
}).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
});

allDocs() Method
One of the best ways to retrieve documents from your PouchDB database is to use
the allDocs() method. The allDocs() method uses the automatic index that is
created based on the values in the _id property of your documents. The allDocs()
method allows you to retrieve all, or a subset of documents from the database.
Documents retrieved using the allDocs() method are returned in _id order. Let's look
at calling the allDocs() method with no parameters.

function getAllDocIdsAndRevs() {
 db.allDocs().then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

The response returned from allDocs() contains three properties. The "total_rows"
property reports how many documents in this database. The "offset" property
reports if you had skipped any documents before providing the rows in the "rows"
property. The "rows" property is an array of JSON objects which contains "id", "key"
and "value" properties. The id and the key properties contain the original value of
the _id property. The value property is an object with a single property named "rev".
This value is the _rev property generated by PouchDB.

Getting Started with PouchDB

6 Getting Started with PouchDB
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

{
 "total_rows": 10,
 "offset": 0,
 "rows": [
 {
 "id": "bjones",
 "key": "bjones",
 "value": {
 "rev": "1-65bfb049dbdc440bba314626cd17cbf5"
 }
 },
 {
 "id": "jkuhn",
 "key": "jkuhn",
 "value": {
 "rev": "1-30b056415cdd4ec69843ec3979c83702"
 }
 },
 ... // MORE DOCS HERE
]
}

While the above data provides you with what is necessary to then retrieve any
document using the get() method, you might want to get all the document data
using allDocs(). Pass an options object to the allDocs() method to control what this
method returns. The options object has a multitude of properties you can set. Check
out more about the options at https://pouchdb.com/api.html#batch_fetch. For this
sample, just set the include_docs property to true to tell allDocs() to return the full
document data.

function getAllDocuments() {
 db.allDocs({ include_docs: true }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

Count Number of Documents
As you saw in the above response objects, you always get the total_rows property
returned. If you wish to just get a total count of documents, but not all the document
data, set two properties in the options object to the following values; limit:0 and
include_docs: false.

https://pouchdb.com/api.html#batch_fetch

allDocs() Method

Getting Started with PouchDB 7
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

function countDocuments() {
 db.allDocs({
 limit: 0,
 include_docs: false
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

The response from this query results in a response object that looks like the
following:

{
 "total_rows": 10,
 "offset": 0,
 "rows": []
}

NOTE: The total_rows property is always the total number of documents in the
database.

Get by Range
Since an index is created automatically each time you insert a document into the
PouchDB database, this means you may filter the data using the _id property.
Include two properties; startkey and endkey within the options object and specify a
starting value and ending value. Consider the following code below.

function getByRange() {
 let options = {
 include_docs: true,
 startkey: 'bjones',
 endkey: 'jkuhn'
 }
 // Get the data
 db.allDocs(options).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

The startkey property is set to one id 'bjones', and the endkey property is set to one
that comes later in the sort order of the ids. All documents between, and including,
these two keys are returned.

Getting Started with PouchDB

8 Getting Started with PouchDB
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Get by Partial Keys
The startkey and endkey do not need contain full id value, you may search on
partial data too. For example, consider the following code.

function getByPrefix() {
 pouchDBSamplesCommon.hideMessageAreas();
 let options = {
 include_docs: true,
 startkey: 'msh',
 endkey: 'msh\ufff0'
 }
 // Get the data
 db.allDocs(options).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

In the options object, the startkey property is set to 'msh', so it would match
documents such as 'msheriff', 'mshane', etc. The endkey property contains the
string 'msh\ufff0'. The value '\ufff0' is special high Unicode character that represents
the last values in the sort order. For this example, it is like specifying
'mshzzzzzzzzzz' for the endkey property. This sample allows you to retrieve any
records that only start with 'msh'.

Summary
In this second part of this series of blog posts on PouchDB, you learned to bulk
insert, update and delete documents from the database. In addition, you learned to
use the allDocs() method to retrieve and count documents. In the next part of this
blog post series you learn to run Mango queries using the find() plug-in to PouchDB.

Sample Code
You can download the complete sample code at my website.
http://www.pdsa.com/downloads. Choose "PDSA/Fairway Blog", then "Getting
Started with PouchDB - Part 2" from the drop-down.

http://www.pdsa.com/downloads

	Getting Started with PouchDB - Part 2
	Bulk Operations
	Bulk Insert
	Bulk Update
	Bulk Delete

	allDocs() Method
	Count Number of Documents
	Get by Range
	Get by Partial Keys

	Summary
	Sample Code

