

Caching for Non-Web Applications –
Part 1

A great feature of ASP.NET applications is the Cache class which allows you
to store values that are commonly used. Caching data can avoid round-trips
to database servers, which can save a lot of time. Until 2010, there was no
good way in a Windows Service, Windows Form or WPF application to cache
data except by writing your own class. Enter the MemoryCache class, part of
the System.Runtime.Caching namespace. This class allows you to add data
to a cache and set a time-out so that data can be removed from memory
when it is no longer used. This blog post will show you the basics of using this
class.

Add Key/Value Pairs
The MemoryCache class has a Default property that refers to a single
instance of a MemoryCache. For most applications, you only require one
cache object. Of course, you may always create a new instance of a
MemoryCache object if you need additional cache objects for your
application. In this blog post you are going to just use the default instance.
To add a new value to the cache, you supply three items; a unique key, a
value to insert, and how long you want the value to stay in the cache. You are
not allowed to insert a null value into the cache, but any other value is
allowed. The following code snippet shows the basics of adding a new value
to the default MemoryCache instance.

MemoryCache.Default.Add("Key1", "Value 1",
 DateTimeOffset.Now.AddSeconds(5));

The first parameter you pass to the Add method is a unique key value that
you use to retrieve the value later. The second parameter is the value to add.
In this case, I just added a simple string, however, this can be any data type.
The last parameter is a DateTimeOffset type to specify how much time the
item should stay in the cache before it is automatically removed.

Caching for Non-Web Applications

2 Caching for Non-Web Applications
Copyright © 2017 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Check to See if Value was Inserted
Instead of just calling the Add method blindly as I did in the previous code
snippet, you should check to see if the value was added. If you attempt to add
the same key value to the same cache, the call will fail and the value is not
updated. You can check the return value from the Add method to determine if
the value was added.

bool ret;

ret = MemoryCache.Default.Add("Key1", "Value 1",
 DateTimeOffset.Now.AddSeconds(5));
if (ret) {
 MessageBox.Show("Key did NOT exist");
}
else {
 MessageBox.Show("The Key did already exist");
}

Add Using a Cache Policy
If you wish to set other meta-data information about the item in your cache,
create a CacheItemPolicy object and use that to add your item. One of the
things you can do with a CacheItemPolicy is set a SlidingExpiration property.
The previous code set an absolute time to expire your cache object. The
SlidingExpiration property is a TimeSpan to keep the item in your cache, but
that time span renews each time the item in the cache is accessed.

bool ret;

CacheItemPolicy pol = new CacheItemPolicy();
pol.SlidingExpiration = new TimeSpan(0, 0, 5);
ret = MemoryCache.Default.Add("Key1", "Value 1", pol);
if (ret) {
 MessageBox.Show("Key did NOT exist");
}
else {
 MessageBox.Show("The Key did already exist");
}

In the previous code the SlidingExpiration property of a new CacheItemPolicy
object is set to 5 seconds. If you access the item in the cache at 4 seconds,
then the item will stay in the cache for another 5 seconds. If you access it
again after 3 seconds, then another 5 seconds is added on. However, if you
do not access the item, then that item is removed from the cache after 5
seconds has elapsed.

 Access the Data in the Cache

Caching for Non-Web Applications 3
Copyright © 2017 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Add Using the Default Indexer
If you wish to add an item without setting any expiration time, you can use the
default indexer. Pass the key name within square brackets to either add a
new, or update an existing key, within the MemoryCache object.

MemoryCache.Default["Key1"] = "Value 1a";

Access the Data in the Cache
After you have entered data in the cache, you need to retrieve it, check to see
if it is still in there, count it, etc. The MemoryCache object, of course, supplies
you with the appropriate methods to perform these operations. To retrieve a
value, use the Get method. You should check to see that the key exists
before you retrieve it.

if (MemoryCache.Default.Get("Key1") != null) {
 MessageBox.Show(
 MemoryCache.Default.Get("Key1").ToString());
}
else {
 MessageBox.Show("Cache Item Does Not Exist");
}

If you attempt to Get a key that does not exist within the cache a null value is
returned. If it does exist, the Get method returns an object type to you. You
will need to cast the data to the appropriate data type prior to using it.

Use the Default Indexer
Instead of using the Get method you may also use the indexer property to
retrieve a value from the cache. The indexer to the MemoryCache object is
just like any other .NET indexer. You pass the key name within square
brackets to the MemoryCache object and it will return the value if one exists.
The code below provides the exact same functionality as the previous
sample.

Caching for Non-Web Applications

4 Caching for Non-Web Applications
Copyright © 2017 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

if (MemoryCache.Default[THE_KEY] != null) {
 MessageBox.Show(MemoryCache.Default[THE_KEY].ToString());
}
else {
 MessageBox.Show("Cache Item Does Not Exist");
}

Using the Contains Method
Instead of using the Get method and having it return a null if the key does not
exist, use the Contains method to just check to see if a key exists in the
cache. The code below shows an example of using the Contains method.

if (MemoryCache.Default.Contains("Key1")) {
 MessageBox.Show("Cache Item Exists");
}
else {
 MessageBox.Show("Cache Item Does NOT Exist");
}

Count the Items in the Cache
Call the GetCount method to determine how many items are currently cached
in the MemoryCache object. This method returns an integer value.

MessageBox.Show(MemoryCache.Default.GetCount().ToString());

Remove an Item from the Cache
At some point, you might with to manually remove an item from the cache,
instead of just letting the item expire. To accomplish this, call the Remove
method passing in the key value.

 Summary

Caching for Non-Web Applications 5
Copyright © 2017 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

MemoryCache.Default.Remove("Key1");

Summary
In this blog post you were introduced to the MemoryCache object. This object
allows you to cache data in any type of application, even a non-web
application. This class is like the ASP.NET Cache object in that it allows you
to time-out values you put into the cache. You can add values to the cache
using the Add or default indexer. Retrieve values from the cache using the
Get method or the default indexer. You may also count, check for key
existence, and remove items from the cache.

Sample Code
You can download the code for this sample at www.pdsa.com/downloads.
Choose the category “PDSA Blogs”, then locate the sample Caching for
Non-Web Applications – Part 1.

http://www.pdsa.com/downloads

	Caching for Non-Web Applications – Part 1
	Add Key/Value Pairs
	Check to See if Value was Inserted
	Add Using a Cache Policy
	Add Using the Default Indexer

	Access the Data in the Cache
	Use the Default Indexer
	Using the Contains Method
	Count the Items in the Cache
	Remove an Item from the Cache

	Summary
	Sample Code

