
Getting Started with PouchDB -
Part 1

As more and more users interact with web applications on their mobile devices, it is
becoming increasingly important for us to allow them to work offline. There are
many cases where users need to work offline, such as on an airplane, in a remote
location where there is no cellular access, or perhaps on board a large ship where
Wi-Fi is not available. If you can store data local to your web application, the user
can continue to work even without a connection.
You may be tempted to use local storage, but this approach is very unstructured,
can be slow to access, and does not allow the storage of a lot of data. Another route
is to use WebSQL, which is based on SQLLite. However, this specification has
been deprecated and will eventually be phased out of browsers. Another route is
IndexedDB, a very popular JavaScript database designed for local storage in a web
application. However, the API for IndexedDB can vary slightly from browser to
browser, and is callback-based, instead of using the more modern promise-based
approach.
Enter PouchDB, which provides a thin wrapper on top of IndexedDB, makes all calls
consistent between browsers, and is promise-based. This first part of a series of
blog posts shows teaches you the basics of working with PouchDB.

What is PouchDB
PouchDB is an open-source JavaScript NoSQL database designed to run offline
within a browser. There is also a PouchDB server version that can be used when
online. These two databases synchronize from one to another using a simple API
call. You may also use CouchDB on the server to synchronize your data.
A NoSQL database is storage where there is no fixed table structure as in a
relational database. There are a few different methods NoSQL databases store
data: column, document, Graph, and key-value pair. Of these, the most common
are column and document. PouchDB supports document-oriented where data in the
model is stored as a series of JSON objects with a key value assigned to each
document.
Each document in PouchDB must contain a property called _id. The value in the _id
field must be unique per database. You may use any string value you want for the
_id field. In this article, I am going to use a value that is very simple. However, for a

Getting Started with PouchDB - Part 1

2 Getting Started with PouchDB - Part 1
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

real-world application you might consider using a GUID as this will ensure the
values are completely unique if you synchronize with a server-side database.
You may insert new documents into your database by using the post() or the put()
method, and pass in a JSON object. Once inserted, you can retrieve the document
very quickly by searching for the value in the _id field, or you can perform other
searches by using views and creating indexes.
To modify or delete an existing document, you must first locate the specific
document, and load the full document into memory. Make changes to any field you
want using JavaScript, then save the entire document back into the database. A
field named _rev is created/updated with a new, unique value to help keep track of
which is the most up-to-date version of the document.

PouchDB Basics
To illustrate the basics of working with PouchDB, create a HTML project and include
the Bootstrap CSS framework (www.getbootstrap.com), PouchDB
(www.pouchdb.com) and jQuery (www.jquery.com). Add an HTML page and add
the two <div> statements. The first <div> statement is used to display messages,
and the other displays the JSON returned from our PouchDB operations. You can
add some HTML buttons to call the various functions illustrated in this post.

<div id="messageArea" class="alert alert-danger hidden">

</div>

<div id="jsonArea" class="alert alert-info hidden">
 <textArea id="json" cols="100" rows="30"></textArea>
</div>

Common JavaScript
Create a JavaScript file named PouchDBSamples-common.js and add a closure
with the following code. The code in this closure is used in each of our samples to
display messages, display JSON, and to clear the messages and JSON display
areas.

http://www.getbootstrap.com/
http://www.pouchdb.com/
http://www.jquery.com/

PouchDB Basics

Getting Started with PouchDB - Part 1 3
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

let pouchDBSamplesCommon = (function () {
 //*************************************
 //* Private Functions
 //*************************************
 function displayMessage(msg) {
 $("#messageArea").removeClass("hidden");
 $("#message").text(msg);
 console.log(msg);
 }

 function displayJSON(data) {
 $("#jsonArea").removeClass("hidden");
 $("#json").text(JSON.stringify(data, undefined, 2));
 }

 function hideMessageAreas() {
 $("#messageArea").addClass("hidden");
 $("#message").text("");
 $("#jsonArea").addClass("hidden");
 $("#json").text("");
 }

 //************************************
 //* Public Functions
 //************************************
 return {
 displayMessage: displayMessage,
 displayJSON: displayJSON,
 hideMessageAreas: hideMessageAreas
 }
})();

Most of the methods in this closure are self-explanatory, but the displayJSON()
method might need a little more explanation. I'm sure you are familiar with
JSON.stringify(), but I added two additional parameters to it. The second parameter
is not used, so just pass an undefined. If you pass a number as the third parameter,
it includes the specified number of white space in the stringified JSON object. This
gives us nicely formatted JSON string for display on our web page.

Open/Create a Database
On the HTML page you created, add links to PouchDB, jQuery and the JavaScript
file you just created.

<script src="../Scripts/pouchdb-6.4.3.min.js"></script>
<script src="../Scripts/jquery-3.3.1.min.js"></script>
<script src="../Scripts/pouchDBSamplesCommon.js"></script>

Add a <script></script> tag just below the script tags you just created. Within these
script tags create a variable named db. Create a function named
openCreateDatabase() and write code within this function to create a new instance

Getting Started with PouchDB - Part 1

4 Getting Started with PouchDB - Part 1
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

of a PouchDB database called 'handyman'. Respond to the 'created' event by using
the on() method on the PouchDB class. If the PouchDB database is opened, or
created successfully, the database name is passed to this event. Use the closure to
display a message that the database is now ready to be used.

<script>
 let db = null;

 function openCreateDatabase() {
 db = new PouchDB('handyman');
 PouchDB.on('created', function (dbName) {
 pouchDBSamplesCommon.displayMessage("Database: '" + dbName +
"' opened successfully.");
 });
 }
</script>

Add an HTML button on the page to call the openCreateDatabase() function.

<button class="btn btn-primary" onclick="openCreateDatabase();">
 Open/Create Database
</button>

Add a Document
Now that the database is open, call the put() method on the database object to
inject a new JSON object into the database. Always use the put() method instead of
the post() method, as put() either adds or inserts a document and sets a revision id
(_rev field). The _rev field is needed when synchronizing client-side data to the
server.

function addTechnician() {
 db.put({
 _id: 'psheriff',
 firstName: 'Pal',
 lastName: 'Sheriss',
 docType: 'technician'
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 pouchDBSamplesCommon.displayMessage("Technician added.");
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

PouchDB Basics

Getting Started with PouchDB - Part 1 5
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Get a Document
Once a document is in the database, you may extract it by passing the _id value to
the get() method. This method returns the complete document found or throws an
error if the document is not found.

function getTechnician() {
 db.get("psheriff")
 .then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

Update a Document
In order to update a document, you need to retrieve the entire document first using
the get() method. Once the document is retrieved, set any of the properties you
want to modify, the invoke the put() method, passing in the changed document. Be
sure to return the output from the put() method so this new promise can be caught
and you check for the success or failure of the update operation.

function updateTechnician() {
 db.get("psheriff")
 .then(function (doc) {
 // Change the document
 doc.firstName = "Paul";
 doc.lastName = "Sheriff";
 // Update the document
 return db.put(doc);
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 pouchDBSamplesCommon.displayMessage("Technician updated.");
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

Delete a Document
You need to retrieve a document prior to deleting it. Pass the _id value you wish to
locate to delete. In the then() function, call the remove() method on the PouchDB
object. Pass the complete document to the remove() method. Alternatively, you may
pass the values for the _id and _rev fields to the remove() method. Return the
output from the remove() method, which is a promise. This way you can check the
success or failure of the remove operation.

Getting Started with PouchDB - Part 1

6 Getting Started with PouchDB - Part 1
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

function deleteTechnician() {
 // Get technician
 db.get("psheriff")
 .then(function (doc) {
 // Delete the technician
 return db.remove(doc);
 }).then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 pouchDBSamplesCommon.displayMessage("Technician deleted.");
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
}

Compact Database
As you modify documents, a new revision of the document is stored each time. This
means that over time, you have a lot of old versions of the same document. Not all
of these are needed, especially after you have synchronized your data to the server.
Call the compact() method to remove the old data periodically to keep your
database size reasonable.

function compactDB() {
 if (db) {
 db.compact().then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 pouchDBSamplesCommon.displayMessage("Database compacted");
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
 }
 else {
 pouchDBSamplesCommon.displayMessage("Please open the database
first.");
 }
}

Delete a Database
If you are finished using a database, you can remove it completely using the
destroy() method. This option removes all data, views, and other meta-data
associated with this database. There is no way to recover from this operation, so be
careful!

Summary

Getting Started with PouchDB - Part 1 7
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

function destroyDatabase() {
 if (db) {
 db.destroy().then(function (response) {
 pouchDBSamplesCommon.displayJSON(response);
 pouchDBSamplesCommon.displayMessage("Database deleted.");
 }).catch(function (err) {
 pouchDBSamplesCommon.displayMessage(err);
 });
 }
 else {
 pouchDBSamplesCommon.displayMessage("Please open the database
first.");
 }
}

Summary
In this blog post you were introduced to PouchDB. You learned to create, update,
delete and read documents from within a database. You also saw how to compact
and delete a database. In the next several installments of this blog post series, you
are going to learn to bulk insert and read documents, filter and count documents,
use Mango queries, use map and reduce functions.

Sample Code
You can download the complete sample code at my website.
http://www.pdsa.com/downloads. Choose "PDSA/Fairway Blog", then "Getting
Started with PouchDB - Part 1" from the drop-down.

http://www.pdsa.com/downloads

	Getting Started with PouchDB - Part 1
	What is PouchDB
	PouchDB Basics
	Common JavaScript
	Open/Create a Database
	Add a Document
	Get a Document
	Update a Document
	Delete a Document
	Compact Database
	Delete a Database

	Summary
	Sample Code

