
 

Unit Testing Using the Command Line 
This is another in my series of blog posts on unit testing. If you are not 
familiar with unit testing, go back and read these posts. 

• Introduction to Unit Testing in Visual Studio 

• Avoid Hard-Coding in Unit Tests 

• Unit Test Initialization and Cleanup 

• Add Attributes to Unit Tests 

• Using Assert Classes and Methods in Unit Tests 
In this post, you are going to learn to run unit tests from the command line. 
This allows you to schedule tests using task manager or any other automated 
scheduling tool. The VSTest.Console.exe is the tool you use as a .NET 
developer to run your unit tests in your .NET test dll. 

Simple VSTest.Console Run 
The VSTest.Console.exe is typically installed into the following path: 
C:\Program Files (x86)\Microsoft Visual Studio 
14.0\Common7\IDE\CommonExtensions\Microsoft\TestWindow. When you 
run this tool, you need to prefix this path to the .exe, or add this path to the 
PATH environment variable. If you open a Developer Command Prompt for 
VS2015 (Figure 1) this path will already be included. 

 
Figure 1: Use the Developer Command Prompt 



Unit Testing Using the Command Line 

2 Unit Testing Using the Command Line 
Copyright © 2017 by PDSA, Inc. 

All rights reserved worldwide. Reproduction is strictly prohibited.  

If you have been creating the project as you have been following along with 
this series of blog posts, you have a DLL named MyClassesTest.dll located in 
the \bin\Debug folder of where your project is located on your disk. Open a 
Developer Command Prompt and navigate to that folder. Type in the following 
in your command window. 

VSTest.Console.exe MyClassesTest.dll 

Press the Enter key and you should see something that looks like Figure 2. 
You may or may not have the warnings depending on if you added the 
DeploymentItem attributes. 

 
Figure 2: A simple run of the VSTest.Console 

View Installed Loggers 
Now that you know how to run your unit tests from the command line, you 
now need to learn to log the results to a file that you can look at later. If you 
are going to be running your unit tests overnight, you want to come back in 
the morning to see the results. If they are just sitting in a command window, 
you could accidentally close that window and you would lose the results. 



 Using Logger 

Unit Testing Using the Command Line 3 
Copyright © 2017 by PDSA, Inc. 
All rights reserved. Reproduction is strictly prohibited. 

Instead, the VSTest.Console utility has a set of loggers that you can use. 
Type in the following in the command window. 

VSTest.Console.exe /ListLoggers 

Press the Enter key to see a screen that looks like Figure 3. 

 
Figure 3: View the log options you can use with VSTest.Console 

The ConsoleLogger is the one you are currently looking at in your command 
window. The TfsLogger is useful if you are using Team Foundation Server as 
it allows you to send the results to TFS so you can assign work items based 
on any failed unit tests. The last one is the one that will be useful if you do not 
have TFS. The TrxLogger creates a .trx file which you can load into Visual 
Studio and see a list of all of your unit tests. You can then click on each test 
and see the results, and the outputs for that test. 

Using Logger 
Let’s take a look at using the TrxLogger option when using the 
VSTestConsole.exe utility. Type in the following into the command window. 



Unit Testing Using the Command Line 

4 Unit Testing Using the Command Line 
Copyright © 2017 by PDSA, Inc. 

All rights reserved worldwide. Reproduction is strictly prohibited.  

VSTest.Console.exe MyClassesTest.dll /Logger:trx 

Press the Enter key and the unit testing will run. The results are now stored in 
a .trx file located in the TestResults folder under your \bin\Debug folder. Each 
time you run a new .trx file is added with a later date and time add to the file 
name. 
Double click on any of the *.trx files and it will load the results into a Test 
Results window in Visual Studio as shown in Figure 4. You can double-click 
on any of the tests to see the output from that test.  

 
Figure 4: Visual Studio can display all results from a .trx file 

Run Specific Test(s) 
The VSTest.Console utility allows you to specify single or multiple test 
method names to run. If you are just testing one or two items, there is no 
reason to run all the tests in your DLL. Add the /Tests parameter on the 
command line followed by a comma-delimited list of method names you wish 
to execute. Type the following into your command window. 

VSTest.Console.exe MyClassesTest.dll /Tests:FileNameDoesExist 

Press the Enter key and you should see a result that looks like Figure 5. 



 Run Specific Test(s) 

Unit Testing Using the Command Line 5 
Copyright © 2017 by PDSA, Inc. 
All rights reserved. Reproduction is strictly prohibited. 

 
Figure 5: The /Tests parameter does pattern matching on your method names 

Notice that multiple tests where run even though you only specified a single 
name. This is because the /Tests parameter uses pattern matching on your 
method names. It will find any method that starts with the name you pass in 
and run those methods. 
You can use a comma-delimited list to specify different sets of methods to 
run. Type the following into your command window. 

VSTest.Console.exe MyClassesTest.dll  
   /Tests:FileNameDoesExist, 
    FileNameNullOrEmpty_ThrowsArgumentNullException 

Press the Enter key and you should see results that look similar to Figure 6. 

 
Figure 6: You may use a comma-delimited list after the /Tests parameter 

 



Unit Testing Using the Command Line 

6 Unit Testing Using the Command Line 
Copyright © 2017 by PDSA, Inc. 

All rights reserved worldwide. Reproduction is strictly prohibited.  

Filter Tests to Run based on Attributes 
As mentioned in the blog post on attributes, the Priority attribute is not used 
by the unit test framework. However, when you use the VSTest.Console 
utility, you are allowed to filter based on the Priority attribute. Type in the 
following to the command window and you can run just those methods that 
have the Priority(1) attribute. 

VSTest.Console.exe MyClassesTest.dll  
   /TestCaseFilter:"Priority=1"  

The /TestCaseFilter lets you specify attributes and specific names of methods 
to run. For example, if you want to just run one test with the name of 
FileNameDoesExist, you type in the following into the command window to 
run that one test. 

VSTest.Console.exe MyClassesTest.dll  
   /Name:"FileNameDoesExist"  

Another attribute you can specify to run is TestCategory. Run the following in 
the command window to just run those tests marked with 
[TestCategory(“NoException”)]. 

VSTest.Console.exe MyClassesTest.dll 
   /TestCaseFilter:"TestCategory=NoException" 

You are not allowed to use both the /TestCaseFilter parameter and the /Tests 
parameter together. You must just run one or the other. 

Summary 
Running unit tests in a batch is made easy with the VSTest.Console.exe 
utility. This utility allows you to log the output to a file for later review. You can 
also log to TFS to help you assign work items to unit tests that fail. The 
VSTest.Console utility also lets you filter the tests to run using either a /Tests 
parameter, or a /TestCaseFilter parameter. 



 Sample Code 

Unit Testing Using the Command Line 7 
Copyright © 2017 by PDSA, Inc. 
All rights reserved. Reproduction is strictly prohibited. 

Sample Code 
You can download the code for this sample at www.pdsa.com/downloads. 
Choose the category “PDSA Blogs”, then locate the sample Unit Testing 
Using the Command Line. 

http://www.pdsa.com/downloads

	Unit Testing Using the Command Line
	Simple VSTest.Console Run
	View Installed Loggers
	Using Logger
	Run Specific Test(s)
	Filter Tests to Run based on Attributes
	Summary
	Sample Code

