
Filter Data in WPF DataGrid

In most business applications, users wish to filter data that has been displayed to
them. This blog post is not about how you filter, per se, but how to display the
filtering options to the user. In the first scenario, an expander control where the user
selects values to filter is used. In the second scenario, the filters are displayed
within the column header on the data grid control. The third scenario ensures that
column headers are aligned consistently across each column.

Customer Classes
The sample for this blog post uses the AdventureWorksLT database included with
SQL Server. I am going to perform filtering on the Customer table from that
database. As such, I have created a Customer entity class, an
AdventureWorksDbContext class and a CustomerViewModel class as shown in
Figure 1.

Filter Data in WPF DataGrid

2 Filter Data in WPF DataGrid
Copyright © 2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 1: Overview of Customer classes

Customer Class
This class is a typical Entity Framework entity class. It contains a property for each
column in the Customer table in the AdventureWorksLT database. The appropriate
data annotations are added to the class and properties. Download the sample
project at the end of this blog to view this class.

Customer View Model Class
You should always be using a Model-View-View-Model (MVVM) approach in your
WPF applications. In this application, the CustomerViewModel class is used to bind
to your WPF user control where the user interface (UI) is created.

Properties in the Customer View Model Class
There are several properties and methods you need to create in this class as
outlined in the table below.

Property Name Data Type

Customers ObservableCollection<Customer>

FilteredCustomers ObservableCollection<Customer>

Customer Classes

Filter Data in WPF DataGrid 3
Copyright © 2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Message string

SalesPeople ObservableCollection<string>

SelectedSalesPerson string

SelectedTitle string

Titles ObservableCollection<string>

Methods in the Customer View Model Class
The methods in this view model class are used to load the titles, sales persons and
customers from the Customer table. There is also a method to filter the customer
data after it has been loaded into the Customers property.

LoadCustomers Method
The LoadCustomers() method uses the Entity Framework to read the list of
customer records from the Customer table and place them into an
ObservableCollection of Customer objects. Once all customer records are loaded,
the FilteredCustomers property is assigned to the Customers property.
All the DataGrid controls you use in this blog post are bound to the
FilteredCustomers property. The Customers property in this view model should
always contain the complete list of customer records read from the table. The
FilteredCustomers property is always going to contain the result of the user filtering
the data. Using two properties like this lessens the amount of times you need to
read data from your SQL Server. This saves time and computing resources.

public void LoadCustomers()
{
 AdventureWorksDbContext db = null;

 Customers = new ObservableCollection<Customer>();
 try {
 db = new AdventureWorksDbContext();
 Customers = new ObservableCollection<Customer>(db.Customers);
 }
 catch (Exception ex) {
 Message = ex.ToString();
 }

 FilteredCustomers = Customers;
}

LoadTitles Method
In the Customer table, there is a Title field that contains the title of each customer.
In this blog post, you are going to be filtering the customer data by selecting a single
title on which to filter. The Titles property is a collection of string values to which you
can bind to a ComboBox so all titles within the customer table can be displayed.

Filter Data in WPF DataGrid

4 Filter Data in WPF DataGrid
Copyright © 2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

After the LoadCustomers() method is called, the Customers property is loaded with
all current customers. Call The LoadTitles() method after this method and it will
select all distinct Title properties from the Customers property.
After all titles are loaded, a value of "All" is inserted into the first position in this
collection. This value is displayed as the first entry in a ComboBox. Next, the
SelectedTitle property is set to the value of "All" to force the data binding on the
ComboBox to select that row in the collection and display it in the ComboBox.

public void LoadTitles()
{
 Titles = new ObservableCollection<string>(
 this.Customers.Select(c => c.Title).Distinct());

 Titles.Insert(0, "All");

 SelectedTitle = "All";
}

LoadSalesPeople Method
In the Customer table, there is a SalesPerson field that contains the name of a
sales person of each customer. In this blog post, you are going to be filtering the
customer data by selecting a single sales person on which to filter. The
SalesPeople property is a collection of string values to which you can bind to a
ComboBox so all sales people within the customer table can be displayed. After the
LoadCustomers() method is called, the Customers property is loaded with all
current customers. Call The LoadSalesPeople() method after this method and it will
select all distinct SalesPerson properties from the Customers property.
After all sales people are loaded, a value of "All" is inserted into the first position in
this collection. This value is displayed as the first entry in a ComboBox. Next, the
SelectedSalesPerson property is set to the value of "All" to force the data binding on
the ComboBox to select that row in the collection and display it in the ComboBox.

public void LoadSalesPeople()
{
 SalesPeople = new ObservableCollection<string>(
 this.Customers.Select(c => c.SalesPerson).Distinct());

 SalesPeople.Insert(0, "All");

 SelectedSalesPerson = "All";
}

Load Method
Instead of having to call all three of the above methods from the code behind in your
WPF user control, create a method named Load() to call each of these three

Encapsulate Filter Criteria in an Expander

Filter Data in WPF DataGrid 5
Copyright © 2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

methods. Make sure the LoadCustomers() method is called first so the customer
data is loaded before you attempt to load distinct titles and sales people.

public void Load()
{
 // Load customers before loading titles and sales people
 LoadCustomers();
 LoadTitles();
 LoadSalesPeople();
}

FilterCustomers() Method
When the user selects either a customer title or sales person from a ComboBox,
you should call the FilterCustomers() method. This method uses LINQ to apply a
Where clause to the Customers collection to set the FilteredCustomers collection to
the result of the data found.

private void FilterCustomers()
{
 FilteredCustomers = new ObservableCollection<Customer>(
 Customers.Where(c =>
 (SelectedTitle == "All" ? true : c.Title == SelectedTitle)
 && (SelectedSalesPerson == "All" ? true :
 c.SalesPerson == SelectedSalesPerson)));
}

Encapsulate Filter Criteria in an
Expander

On the screen shown in Figure 2, an expander control is used to encompass two
combo box controls. The first combo box is filled with the distinct list of titles created
in the LoadTitles() method of your customer view model. The second combo box is
filled with the distinct list of sales people created in the LoadSalesPeople() method.
This UI approach is good if you want the ability to hide the filter criteria when you
first come into the screen. It also works well if users don’t frequently filter the data.

Filter Data in WPF DataGrid

6 Filter Data in WPF DataGrid
Copyright © 2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 2: Use an Expander control to encompass filters so the area may be collapsed

To create the screen displayed in Figure 2, Add an XML namespace to a user
control to reference the CustomerViewModel class and a Loaded event procedure. I
have named my user control CustomerSearchControl, but feel free to call it
whatever you wish.

<UserControl
 ...
 xmlns:vm="clr-namespace:FilterDataSample.ViewModels"
 Loaded="UserControl_Loaded">

Add a UserControl.Resources element in your user control and create an instance
of the CustomerViewModel. Assign a key name of "viewModel" to this resource.

<UserControl.Resources>
 <vm:CustomerViewModel x:Key="viewModel" />
</UserControl.Resources>

Encapsulate Filter Criteria in an Expander

Filter Data in WPF DataGrid 7
Copyright © 2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Add the DataContext attribute to the <Grid> element and bind it to the view model
created in the resources. Add two row definitions; one for the search expander and
one for the DataGrid.

<Grid DataContext="{Binding Source={StaticResource viewModel}}">
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="*" />
 </Grid.RowDefinitions>

</Grid>

Add Search Expander
In the first row of the Grid control, add an Expander control to enclose the search
fields. You do not have to use an Expander, but I would recommend you use a
GroupBox or some other container control to separate the search area from the
DataGrid control. Add the following XAML just below the </Grid.RowDefinition>
element.

<Expander Grid.Row="0"
 Header="Filters">
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="*" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <TextBlock Grid.Row="0"
 Grid.Column="0"
 Text="Select Title" />
 <ComboBox Grid.Row="1"
 Grid.Column="0"
 SelectedValue="{Binding Path=SelectedTitle}"
 ItemsSource="{Binding Path=Titles}" />
 <TextBlock Grid.Row="0"
 Grid.Column="1"
 Text="Select Sales Person" />
 <ComboBox Grid.Row="1"
 Grid.Column="1"
 SelectedValue="{Binding Path=SelectedSalesPerson}"
 ItemsSource="{Binding Path=SalesPeople}" />
 </Grid>
</Expander>

Set the first ComboBox control's ItemsSource property to the Titles property in the
customer view model class. Set the SelectedValue property to the SelectedTitle
property in the view model. The second ComboBox bind the ItemsSource property

Filter Data in WPF DataGrid

8 Filter Data in WPF DataGrid
Copyright © 2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

to the SalesPeople property and the SelectedValue property to the
SelectedSalesPerson property. As you remember, these values are set when you
call the LoadTitles() and LoadSalesPeople() methods in the view model.

Add a DataGrid
Below the Expander, add a DataGrid control. Set the AutoGenerateColumns
property to false because you are going to be adding your own columns to this grid.
I set the IsReadOnly property to true so no editing can be done within the grid, but
feel free to change this if you want. Finally, set the ItemsSource property to the
FilteredCustomers property from the view model. Initially, this property is set to all
customers, but this collection will change as you select different filtering criteria from
the two ComboBox controls.

<DataGrid Grid.Row="1"
 AutoGenerateColumns="False"
 IsReadOnly="True"
 ItemsSource="{Binding Path=FilteredCustomers}">
 <DataGrid.Columns>
 <DataGridTextColumn Binding="{Binding Path=CustomerID}"
 Header="Customer ID" />
 <DataGridTextColumn Binding="{Binding Path=Title}"
 Header="Title" />
 <DataGridTextColumn Binding="{Binding Path=FullName}"
 Header="Full Name" />
 <DataGridTextColumn Binding="{Binding Path=Suffix}"
 Header="Suffix" />
 <DataGridTextColumn Binding="{Binding Path=CompanyName}"
 Header="Company Name" />
 <DataGridTextColumn Binding="{Binding Path=SalesPerson}"
 Header="Sales Person" />
 <DataGridTextColumn Binding="{Binding Path=EmailAddress}"
 Header="Email Address" />
 <DataGridTextColumn Binding="{Binding Path=Phone}"
 Header="Phone" />
 </DataGrid.Columns>
</DataGrid>

Add Code to Load Customers
In order to retrieve the list of customers to display within the DataGrid, add some
code in the code-behind for this user control. Add a private field to hold an instance
of a customer view model.

Encapsulate Filter Criteria in an Expander

Filter Data in WPF DataGrid 9
Copyright © 2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

CustomerViewModel _viewModel = null;

Set this field by retrieving the view model instance created by the XAML. In the
constructor of this user control, get the instance by calling the FindResource()
method and passing in the key set in the UserControl.Resources element.

public CustomerSearchControl()
{
 InitializeComponent();

 _viewModel = (CustomerViewModel)this.FindResource("viewModel");
}

Call the Load() method in the view model from the UserControl_Loaded event
procedure. This method loads the customers into the FilteredCustomers property
that is bound to the DataGrid. It also loads the titles and the sales people bound to
the two ComboBox controls.

private void UserControl_Loaded(object sender, RoutedEventArgs e) {
 _viewModel.Load();
}

Filtering Data
Now that you have the two ComboBox controls and the DataGrid bound to the view
model, and you have loaded the customer data, you can run the application and see
the data displayed within each of the controls. It's now time to filter the customer
data when you change either of the ComboBox controls to a different title or sales
person. You do this by calling the FilterCustomers() method in the customer view
model when either the SelectedTitle or SelectedSalesPerson properties are
changed.

SelectedTitle Property
In the customer view model class, locate the SelectedTitle property and call the
FilterCustomers() method from within the set procedure.

Filter Data in WPF DataGrid

10 Filter Data in WPF DataGrid
Copyright © 2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

public string SelectedTitle
{
 get { return _SelectedTitle; }
 set {
 if (_SelectedTitle != value) {
 _SelectedTitle = value;
 RaisePropertyChanged("SelectedTitle");

 // Filter Customers based on selected title
 FilterCustomers();
 }
 }
}

SelectedSalesPerson Property
In the customer view model class, locate the SelectedSalesPerson property and call
the FilterCustomers() method from within the set procedure.

public string SelectedSalesPerson
{
 get { return _SelectedSalesPerson; }
 set {
 if (_SelectedSalesPerson != value) {
 _SelectedSalesPerson = value;
 RaisePropertyChanged("SelectedSalesPerson");

 // Filter Customers based on selected Sales Person
 FilterCustomers();
 }
 }
}

Try it Out
These two changes are all you need to allow filtering of the customer data when the
user selects a new title or sales person from the two ComboBox controls within the
Expander.

Filter in Column Header
Now that you have the code written to filter customers and a DataGrid to display
those filtered customers, let's change our UI a little. In Figure 3, you see the
ComboBox controls have been removed from the Expander control and are instead
right in the header of the appropriate columns in the DataGrid. Integrating these
controls directly in the header makes the UI a little more compact.

Filter in Column Header

Filter Data in WPF DataGrid 11
Copyright © 2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Figure 3: Add filtering controls to the headers in the DataGrid

Add a Style
To create this new DataGrid, first add a style in the <UserControl.Resources>
element to reduce the margin of the ComboBox controls to zero. If you don't add
this control, the header area in the Title and SalesPerson columns will look too
large.

<Style TargetType="ComboBox">
 <Setter Property="Margin"
 Value="0" />
</Style>

Replace the Title DataGridTextColumn
In the previous DataGrid, you used DataGridTextColumn objects to build each
column of the grid. However, you now need to use a DataGridTemplateColumn so
you can define the header area of the Title and SalesPerson columns. Locate the
DataGridTextColumn for the Title column; it looks like the following:

<DataGridTextColumn Binding="{Binding Path=Title}"
 Header="Title" />

Filter Data in WPF DataGrid

12 Filter Data in WPF DataGrid
Copyright © 2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Replace the above line of XAML with the following lines:

<DataGridTemplateColumn>
 <DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Path=Title}" />
 </DataTemplate>
 </DataGridTemplateColumn.CellTemplate>
 <DataGridTemplateColumn.HeaderTemplate>
 <DataTemplate>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <TextBlock Grid.Row="0"
 Text="Title" />
 <ComboBox Grid.Row="1"
 SelectedValue="{Binding Path=SelectedTitle,
Source={StaticResource viewModel}}"
 ItemsSource="{Binding Path=Titles,
Source={StaticResource viewModel}}" />
 </Grid>
 </DataTemplate>
 </DataGridTemplateColumn.HeaderTemplate>
</DataGridTemplateColumn>

The CellTemplate uses a TextBlock control to bind to the Title property of the
customer view model. The HeaderTemplate is where you add a significant amount
of new XAML code. The header for the Title, as shown in Figure 3, needs one row
for the label, and the next row for the ComboBox.
Define a Grid and add two RowDefinitions. In the first row, place a TextBlock to
display the text "Title". In the next row, you can cut out the ComboBox that displays
the Titles from the Expander control, and place that ComboBox into this row.

Replace the Sales Person DataGridTextColumn
Locate the DataGridTextColumn for the sales person column. It looks like the
following:

<DataGridTextColumn Binding="{Binding Path=SalesPerson}"
 Header="Sales Person" />

Replace this XAML with another DataGridTemplateColumn and create the same
type of XAML you used for the Sales Person column.

Align Headers

Filter Data in WPF DataGrid 13
Copyright © 2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

<DataGridTemplateColumn>
 <DataGridTemplateColumn.CellTemplate>
 <DataTemplate>
 <TextBlock Text="{Binding Path=SalesPerson}" />
 </DataTemplate>
 </DataGridTemplateColumn.CellTemplate>
 <DataGridTemplateColumn.HeaderTemplate>
 <DataTemplate>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <TextBlock Grid.Row="0"
 Text="Sales Person" />
 <ComboBox Grid.Row="1"
 SelectedValue="{Binding Path=SelectedSalesPerson,
Source={StaticResource viewModel}}"
 ItemsSource="{Binding Path=SalesPeople,
Source={StaticResource viewModel}}" />
 </Grid>
 </DataTemplate>
 </DataGridTemplateColumn.HeaderTemplate>
</DataGridTemplateColumn>

Remove the Expander Control
After you have moved all the XAML out of the Expander control, remove this
expander as it is no longer needed. Run the application and ensure the new
columns look correct and that they still filter the customer data.

Align Headers
The problem with the UI shown in Figure 3 is the headers for the Title and Sales
Person columns do not line up horizontally with the other columns in the grid. You
can fix this by defining a new ContentTemplate for the DataGridColumnHeader
control (see Figure 4). This new style will apply to any DataGridTextColumn controls
added to the DataGrid. However, when you use a DataGridTemplateColumn, you
are defining a new header template, so this style will not apply.

Filter Data in WPF DataGrid

14 Filter Data in WPF DataGrid
Copyright © 2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 4: Align headers in the DataGrid by creating your own ContentTemplate

Add a Resource to DataGrid
Define a <DataGrid.Resources> element within the DataGrid control. In this
resources section, you may define a style that has a TargetType of
"DataGridColumnHeader".

Summary

Filter Data in WPF DataGrid 15
Copyright © 2019 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

<DataGrid AutoGenerateColumns="False"
 IsReadOnly="True"
 ItemsSource="{Binding Path=FilteredCustomers}">
 <DataGrid.Resources>
 <Style TargetType="DataGridColumnHeader">
 <Setter Property="ContentTemplate">
 <Setter.Value>
 <DataTemplate>
 <Grid>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 </Grid.RowDefinitions>
 <TextBlock Text="{Binding}"
 TextWrapping="Wrap" />
 <ComboBox Grid.Row="1"
 Visibility="Hidden" />
 </Grid>
 </DataTemplate>
 </Setter.Value>
 </Setter>
 </Style>
 </DataGrid.Resources>
 <DataGrid.Columns>

 ... // The rest of the XAML HERE

In the style defined for the DataGridColumnHeader, you set the ContentTemplate
property to a new DataTemplate. In the DataTemplate, create a Grid that has two
rows. The first row contains a TextBlock in which you use the Binding keyword. This
binds whatever you set in the Header property to the text of this TextBlock control.
The second row contains a ComboBox with its Visibility property set to Hidden.
Setting this to hidden allows the space for the ComboBox to be there, but the
ComboBox will not be shown. As you are using a ComboBox in the Title and Sales
Person columns, you want all the other columns to have a ComboBox control that
takes up the same exact space. This way, you get all your columns to align as
shown in Figure 4.

Summary
In this blog post, you learned how to filter data using Entity Framework, LINQ, and
WPF. You were shown three different UI's on how you might present the data to
your user for filtering. By moving filtering controls within the DataGrid, you can save
some real estate on your UI. Using an Expander control for your search criteria
controls allows you to have other kinds of filtering that might not fit well within a
DataGrid header.

Filter Data in WPF DataGrid

16 Filter Data in WPF DataGrid
Copyright © 2019 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

NOTE: You can download the sample code for this article by visiting my website at
http://www.pdsa.com/downloads. Select “Fairway/PDSA Blog,” then select “Filter
Data in WPF DataGrid” from the dropdown list.

http://www.pdsa.com/downloads

	Filter Data in WPF DataGrid
	Customer Classes
	Customer Class
	Customer View Model Class
	Properties in the Customer View Model Class
	Methods in the Customer View Model Class
	LoadCustomers Method
	LoadTitles Method
	LoadSalesPeople Method
	Load Method
	FilterCustomers() Method

	Encapsulate Filter Criteria in an Expander
	Add Search Expander
	Add a DataGrid
	Add Code to Load Customers
	Filtering Data
	SelectedTitle Property
	SelectedSalesPerson Property

	Try it Out

	Filter in Column Header
	Add a Style
	Replace the Title DataGridTextColumn
	Replace the Sales Person DataGridTextColumn
	Remove the Expander Control

	Align Headers
	Add a Resource to DataGrid

	Summary

