
How to Upload Small Files Using
Angular

Sometimes you need to upload some files to your server via an Angular application.
There are a few different methods you may use to upload. In this blog post, I am
going to present a method that works well for small files, up to about one to two
megabytes in size. In this blog you build two projects; a .NET Core Web API project,
and an Angular project. You build these two projects from scratch using the Angular
CLI, .NET Core and Visual Studio Code editor.
The result from this blog post is a page that allows you to select one or more small
files using an <input type="file"> element. You then build a custom FileToUpload
object with attributes about the file, plus the file contents. Finally, this FileToUpload
object is sent via a Web API call to a method on the server. Once the server has
this file, you may choose to save it as a file on the server, or whatever you choose.

Upload Small Files using Angular

2 Upload Small Files using Angular
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Build .NET Core Web API
Build the .NET Core Web API application you are going to upload the files to first.
Open up an instance of Visual Studio Code. From the menu, select View |
Integrated Terminal to display a terminal window at the bottom of the editor. You
should see something that looks like the following:

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved.

XX C:\Users\YOUR_LOGIN>

I am sure you have a directory somewhere on your hard drive in which you create
your projects. Navigate to that folder from within the terminal window. For example,
I am going to go to my D drive and then to the \Samples folder on that drive. Enter
the following commands to create a .NET Core Web API project.

d:

cd Samples

mkdir FileUploadSample

cd FileUploadSample

mkdir FileUploadWebApi

cd FileUploadWebApi

dotnet new webapi

Open the Web API Folder
Now that you have built the Web API project, you need to add it to Visual Studio
Code. Select File | Open Folder… and open the folder where you just created the
FileUploadWebApi project. In my case this is from the folder
D:\Samples\FileUploadSample\FileUploadWebApi.

Build .NET Core Web API

Upload Small Files using Angular
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Load Required Assets
After loading the folder, pause for a few seconds, and you should see a new prompt
appear in your Code window saying that some required assets are missing. Click on
the Yes button to add these assets to this project.

Enable Cors
The Web API project is going to run on the address localhost:5000 by default.
However, when you create a new Angular application, it will be running on
localhost:4200 by default. This means each is running on a separate domain from
each other. For your Angular application to call the Web API methods, you must tell
the Web API that you are allowing Cross-Origin Resource Sharing (CORS). To use
CORS, you need to add a CORS package to your project. Go back to the integrated
terminal and type the following command.

Upload Small Files using Angular

4 Upload Small Files using Angular
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

dotnet add package Microsoft.AspNetCore.Cors

Open the Startup.cs file and modify the ConfigureServices() method. Add the
following above services.AddMvc() line.

services.AddCors();

services.AddMvc();

Next, modify the Configure() method to look like the following:

public void Configure(IApplicationBuilder app,
 IHostingEnvironment env)
{
 if (env.IsDevelopment())
 {
 app.UseDeveloperExceptionPage();
 }

 app.UseCors(
 options => options.WithOrigins("http://localhost:4200")
 .AllowAnyMethod().AllowAnyHeader()
);

 app.UseMvc();
}

The code above allows you to specify a single origin from which this Web API
project accepts requests. Also, that you are allowing any method and any header to
be accepted from this origin.
NOTE: You must add the call to the UseCors() method prior to the UseMvc()
method call.

Try it Out
It is a good idea to test out your Web API project and ensure it can accept requests.
Press F5 to build the .NET Core Web API project and launch a browser. The
browser will come up with a blank page. Type the following into the browser
address bar.

 http://localhost:5000/api/values

After hitting enter you should see a string that looks like this.

http://localhost:5000/api/values

Build .NET Core Web API

Upload Small Files using Angular
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

["value1","value2"]

FileToUpload Class
A file that you are going to upload will have many attributes that you might wish to
convey from the front-end to the web service. These attributes are things like the file
name, the file type, the size of the file, etc. Create a C# class to accept each of
these values. Create a \Models folder in the root of your Web API project. Add a
new file named FileToUpload.cs. Add the following code to this new file.

using System;

public class FileToUpload
{
 public string FileName { get; set; }
 public string FileSize { get; set; }
 public string FileType { get; set; }
 public long LastModifiedTime { get; set; }
 public DateTime LastModifiedDate { get; set; }
 public string FileAsText { get; set; }
 public string FileAsBase64 { get; set; }
 public byte[] FileAsByteArray { get; set; }
}

Fil Upload Controller
Next you need a controller class to allow your Angular application to call a method
to send the file to. Delete the ValuesController.cs file from the \Controllers folder.
Now add back into the \Controllers folder a file named FileUploadController.cs.
Add the following code into this file.

Upload Small Files using Angular

6 Upload Small Files using Angular
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

using System;
using System.IO;
using Microsoft.AspNetCore.Mvc;

namespace fileUploadSampleWebApi.Controllers
{
 [Route("api/[controller]")]
 public class FileUploadController : Controller
 {
 const string FILE_PATH = @"D:\Samples\";

 [HttpPost]
 public IActionResult Post([FromBody]FileToUpload theFile)
 {
 // Create unique file name
 var filePath = FILE_PATH +
 DateTime.Now.ToString().Replace("/", "")
 .Replace(":", "").Replace(" ", "") + "-" +
 theFile.FileName;

 // Remove file type from base64 encoding, if any
 if (theFile.FileAsBase64.Contains(","))
 {
 theFile.FileAsBase64 = theFile.FileAsBase64
 .Substring(theFile.FileAsBase64.IndexOf(",") + 1);
 }

 // Convert base64 encoded string to binary
 theFile.FileAsByteArray =
Convert.FromBase64String(theFile.FileAsBase64);

 // Write binary file to server path
 using (var fs = new FileStream(filePath, FileMode.CreateNew))
 {
 fs.Write(theFile.FileAsByteArray, 0,
theFile.FileAsByteArray.Length);
 fs.Close();
 fs.Dispose();
 }

 return Ok();
 }
 }
}

Be sure to change the FILE_PATH constant from "D:\Samples" to a valid path on
your machine that the web project has permissions to write to.

Build Angular Upload Project

Upload Small Files using Angular
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Build Angular Upload Project
It is now time to build the Angular project. From within VS Code open the integrated
terminal window. Navigate back to the folder where you created this project. So, for
my project I want to go to the D:\Samples\FileUploadSample folder. Enter the
following command to create a new Angular application.

ng new FileUploadAngular

Add Web API Project to Workspace
Once the project is created, add the newly created folder named FileUploadAngular
to Visual Studio Code. Select the File | Add Folder to Workspace… menu item as
shown below.

Choose the FileUploadAngular folder as shown in the following screen shot.

Upload Small Files using Angular

8 Upload Small Files using Angular
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

You should now see two projects within VS Code as shown in the following screen
shot. This is called a Workspace.

Save the Workspace
Click File | Save Workspace As… and give it the name FileUploadSampleApp.
Click the Save button to store this new workspace file on disk. From now on, you

Build Angular Upload Project

Upload Small Files using Angular
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

may always open this application by double-clicking on the
FileUploadSampleApp.code-workspace file.

Create FileToUpload Class
Just like you created a FileToUpload class in C# to hold the various attributes about
a file, you want to do the same thing in Angular. Go back into the terminal window
and navigate to the FileUploadAngular folder.

Build a new class that represents a file you wish to upload.

ng g class file-upload/fileToUpload

Open the generated file-to-upload.ts file and add the following code.

export class FileToUpload {
 fileName: string = "";
 fileSize: number = 0;
 fileType: string = "";
 lastModifiedTime: number = 0;
 lastModifiedDate: Date = null;
 fileAsBase64: string = "";
 fileAsText: string = "";
}

Create File Upload Service
As with any Angular application, you should always separate any logic that
communicates with a Web API into an Angular Service class. You can create a new
service using the Angular CLI. In the Integrated Terminal window, enter the
following command to create a FileUploadService class

ng g s file-upload/fileUpload -m app.module

Open the newly generated file-upload.service.ts file and add the following import
statements.

Upload Small Files using Angular

10 Upload Small Files using Angular
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

import { HttpClient, HttpHeaders } from '@angular/common/http';
import { Observable } from 'rxjs/Observable';
import { FileToUpload } from './file-to-upload';

Add two constants just below the import statement. The first constant is the path to
the FileUpload controller you create previously. The second constant is a header
used to post JSON data to the Web API.

const API_URL = "http://localhost:5000/api/FileUpload/";
const httpOptions = {
 headers: new HttpHeaders({
 'Content-Type': 'application/json'
 })
};

The HttpClient class needs to be injected into this service class in order to post the
file information to the Web API method. Modify the constructor of the
FileUploadService class to look like the following.

constructor(private http: HttpClient) { }

Add a method named uploadFile() to which you pass an instance of the
FileToUpload class. This class is built using properties from a File object retrieved
from the user via an <input type="file"> element. Call the post() method on the
HttpClient class passing in the URL where the controller is located, the file object to
post and the http header constant.

uploadFile(theFile: FileToUpload) : Observable<any> {
 return this.http.post<FileToUpload>(
 API_URL, theFile, httpOptions);
}

File Upload Component
It is now time to build the HTML page that prompts the user for a file from their local
drive they wish to upload to the web server. Create a Angular component using the
Angular CLI. This builds a .css, .html and a .ts file from which you build the file
upload page. In the terminal window, enter the following command.

ng g c fileUpload

Open the file-upload.component.ts file and add two import statements for the
FileUploadService and the FileToUpload class.

Build Angular Upload Project

Upload Small Files using Angular
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

import { FileUploadService } from './file-upload.service';
import { FileToUpload } from './file-to-upload';

You should limit the maximum size of file a user may attempt to upload. The files
are going to be base64 encoded prior to sending. When you base64 encode
something, it does grow larger than the original size. So, it is best to limit the size of
the file to upload. Add a constant just below the import statements and set a limit of
one megabyte. Feel free to play with different file sizes to see what works with your
situation.

// Maximum file size allowed to be uploaded = 1MB
const MAX_SIZE: number = 1048576;

You need to add two public properties to FileUploadComponent class. The first
property, theFile, holds an instance of a file object returned from the file upload
object. There is no equivalent of the file object from HTML in Angular, so you must
use the any data type. The second property, messages, is used to display a set of
messages to the user when something happens.

theFile: any = null;
messages: string[] = [];

The FileUploadComponent class creates an instance of a FileToUpload class from
the information contained in the theFile property. It then passes this object to the
FileUploadService to upload the file to the server. Inject the FileUploadService into
the constructor of the FileUploadComponent.

constructor(private uploadService: FileUploadService) { }

Get File Information from Change Event
When the user selects a file from their file system, the change event is fired on the
file input type. You are going to respond to this change event and call a method
named onFileChange() in your component. Write this code as shown below.

Upload Small Files using Angular

12 Upload Small Files using Angular
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

onFileChange(event) {
 this.theFile = null;

 // See if any file(s) have been selected from input
 if (event.target.files && event.target.files.length > 0) {
 // Don't allow file sizes over 1MB
 if (event.target.files[0].size < MAX_SIZE) {
 // Set theFile property
 this.theFile = event.target.files[0];
 }
 else {
 // Display error message
 this.messages.push("File: " + event.target.files[0].name
 + " is too large to upload.");
 }
 }
}

In the onFileChange() method an argument, named event, is passed in by the file
input type. You check the target.files property of this argument to see if the user
selected a file. If a file is selected, check the size property to make sure it is less
than the size you placed into the MAX_SIZE constant. If the file meets the size
requirement, you retrieve the first element in the files array and assign it to the
theFile property. If the file exceeds the size requirement, push a message onto the
messages array to inform the user of the file name that is in error.

Read and Upload File
Add a private method named readAndUploadFile() to the FileUploadComponent
class as shown below.

Build Angular Upload Project

Upload Small Files using Angular
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

private readAndUploadFile(theFile: any) {
 let file = new FileToUpload();

 // Set File Information
 file.fileName = theFile.name;
 file.fileSize = theFile.size;
 file.fileType = theFile.type;
 file.lastModifiedTime = theFile.lastModified;
 file.lastModifiedDate = theFile.lastModifiedDate;

 // Use FileReader() object to get file to upload
 // NOTE: FileReader only works with newer browsers
 let reader = new FileReader();

 // Setup onload event for reader
 reader.onload = () => {
 // Store base64 encoded representation of file
 file.fileAsBase64 = reader.result;

 // POST to server
 this.uploadService.uploadFile(file)
 .subscribe(resp => { this.messages.push("Upload complete");
});
 }
 // Read the file
 reader.readAsDataURL(theFile);
}

You are going to pass the theFile property to this method. I know you are thinking
this is not necessary, however, later when I show you how to handle multiple file
uploads, you will see why this is a good practice. Create a new instance of a
FileToUpload class, and set the properties from the file object retrieved from the file
input type. Next, you are going to use the FileReader object from HTML 5. Note,
this object only works with more modern browsers. Create a new instance of a
FileReader, and setup an onload() event which is called after the file has been
loaded by the readAsDataUrl() method. The readAsDataUrl() reads the contents
and returns the contents as a base64 encoded string. Within the onload() event you
get the file contents in the result property of the reader. Place the contents into the
fileAsBase64 property of the FileToUpload object. Call the uploadFile() method on
the FileUploadService class, passing in this FileToUpload object. Upon successfully
uploading the file, push the message "Upload Complete" onto the messages array
to have it displayed to the user.
The readAndUploadFile() method is called in respond to the Upload File button's
click event.

uploadFile(): void {
 this.readAndUploadFile(this.theFile);
}

Upload Small Files using Angular

14 Upload Small Files using Angular
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

The File Upload HTML
Open the file-upload.component.html file and delete all HTML within that file. Add
the following HTML to this file.

<h1>
 File Upload
</h1>

<label>Select a File (< 1MB)</label>

<input type="file" (change)="onFileChange($event)" />

<button (click)="uploadFile()" [disabled]="!theFile">
 Upload File
</button>

<!-- ** BEGIN: INFORMATION MESSAGE AREA ** -->
<div *ngIf="messages.length > 0">

 {{msg}}

</div>
<!-- ** END: INFORMATION MESSAGE AREA ** -->

In the <input type="file" ...> you see the call to the onFileChange() event you wrote.
The Upload File button is disabled until the theFile property is not null. When it is
clicked upon, the uploadFile() method is called to start the upload process. At the
end of this file is the location where you write all messages contained within the
messages array.

Modify App Module
Open the app.module.ts file and add to the imports property a reference to the
HttpClientModule. After typing the comma, and HttpClientModule, hit the Tab key,
or use the light bulb in Code, to add the appropriate import statement to this file.

imports: [
 BrowserModule,
 HttpClientModule
],

Build Angular Upload Project

Upload Small Files using Angular
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Modify App Component HTML
Open the app.component.html file and delete all the code within this file. Add the
following code to display your file upload component.

<app-file-upload></app-file-upload>

Try it Out
If your Web API project is not still running, go ahead and start it now by pressing F5.
Go to the Integrated Terminal window and start your Angular application using the
following command.

npm start

Open your browser and enter localhost:4200 into the address bar. You should see
a web page the looks like the following:

Click on the Choose File button and select a file that is less than 1 megabyte in
size. After you select a file, the name of that file appears to the right of this button,
and the Upload File button becomes enabled. Click the Upload File button and after
just a second or two, an "Upload Complete" message should be displayed. Check
the folder where you specified to write the files and you should see a file name that
starts with today's date, followed by the file name you selected.

Upload Small Files using Angular

16 Upload Small Files using Angular
Copyright © 2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Upload Multiple Files
If you wish to have the user select and upload multiple files, this is also possible.
Again, each file must be under 1 megabyte in size, but, you may select as many
files as you wish. To accomplish this, make the following changes in your code.
Open the file-upload.component.html file and modify the HTML shown in bold
below.

<label>Select a File(s) (< 1MB)</label>

<input type="file" (change)="onFileChange($event)"
 multiple="multiple" />

<button (click)="uploadFile()" [disabled]="!theFiles.length">
 Upload {{theFiles.length}} File(s)
</button>

Open the file-upload.component.ts file and locate the following line of code.

theFile: any = null;

Modify this from a single object to an array of file objects.

theFiles: any[] = [];

Modify the onFileChange() method so it looks like the code below.

onFileChange(event) {
 this.theFiles = [];

 // See if any file(s) have been selected from input
 if (event.target.files && event.target.files.length > 0) {
 for (let index = 0; index < event.target.files.length; index++)
{
 let file = event.target.files[index];
 // Don't allow file sizes over 1MB
 if (file.size < MAX_SIZE) {
 // Add file to list of files
 this.theFiles.push(file);
 }
 else {
 this.messages.push("File: " + file.name
 + " is too large to upload.");
 }
 }
 }
}

Summary

Upload Small Files using Angular
Copyright © 2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Finally, modify the uploadFile() method to loop through the list of file objects
selected. Each time through the loop, pass the current instance of the file object
retrieved from the file input type to the readAndUploadFile() method. You now
understand why it was important for you to pass a file object to the
readAndUploadFile() method.

uploadFile(): void {
 for (let index = 0; index < this.theFiles.length; index++) {
 this.readAndUploadFile(this.theFiles[index]);
 }
}

Try it Out
Save all your changes. Go back to the browser and you may now select multiple
files. Select a few files, click the Upload Files button and ensure that all files are
uploaded to the appropriate folder.

Summary
In this blog post you learned to upload small files from your client web application to
a server using Angular and a .NET Core Web API project. On the server-side you
need to make sure you enable CORS to pass data from one domain to another. On
the client-side you are using the FileReader class to read data from the user's file
system. This object is only available in more modern browsers. This technique
should only be used for small files. Don't use this technique for large files as it
would take too long to read the data from disk, and too long to send to the server.
During this time, you can't provide feedback to the user and you would not be able
to display a percentage uploaded. There are several good open-source libraries for
uploading large files to the server that do provide feedback as the upload process is
happening.

Getting the Sample Code
You may download the sample code by navigating to www.pdsa.com/downloads.
Select "PDSA/Fairway Blog" from the Category drop-down. Then select "Upload
Small Files using Angular" from the Item drop-down.

http://www.pdsa.com/downloads

	How to Upload Small Files Using Angular
	Build .NET Core Web API
	Open the Web API Folder
	Load Required Assets
	Enable Cors
	Try it Out
	FileToUpload Class
	Fil Upload Controller

	Build Angular Upload Project
	Add Web API Project to Workspace
	Save the Workspace
	Create FileToUpload Class
	Create File Upload Service
	File Upload Component
	Get File Information from Change Event
	Read and Upload File
	The File Upload HTML
	Modify App Module
	Modify App Component HTML
	Try it Out

	Upload Multiple Files
	Try it Out

	Summary
	Getting the Sample Code

