
Build WPF Screens Using
Inheritance and Aggregation

If you have a WPF screen that is made up of two of more "sections," where each
section has its own unique functionality, you might want to consider breaking each
of those pieces of the screen into individual user controls and individual view model
classes. This will help you build, run, and test each component. You can then
aggregate the user controls into one control and inherit from one view model to the
other to bring them all together. In this blog post, you are going to build upon the
sample created in the post entitled "Basics of MVVM in WPF." Read and download
that sample application to follow along with this blog post.

The Sample Application
In the last blog post, you built a list of users using a ListView control and a view
model class. The results look like the top of Figure 1. In this blog post, you are
going to build a user control to display a label and text box for each field as shown
in the bottom of Figure 1.

Figure 1: The sample application with a user list and detail user controls.

Build WPF Screens Using Inheritance and Aggregation

2 Build WPF Screens Using Inheritance and Aggregation
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Create User Detail User Control
Open the sample from the last blog post and add a new user control named
UserDetailControl.xaml within the UserControls folder of the project. Figure 2
shows what this user control is going to look like.

Figure 2: The user detail screen to build.

Modify the <Grid> element so it has two columns and six rows as shown in the code
below.

<Grid>
 <Grid.ColumnDefinitions>
 <ColumnDefinition Width="Auto" />
 <ColumnDefinition Width="*" />
 </Grid.ColumnDefinitions>
 <Grid.RowDefinitions>
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition Height="Auto" />
 <RowDefinition />
 </Grid.RowDefinitions>

</Grid>

After the closing </Grid.RowDefinitions> element, add the following label and text
box controls.

Create User Detail View Model

Build WPF Screens Using Inheritance and Aggregation 3
Copyright © 2012-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

<Label Grid.Row="0"
 Content="User Name" />
<TextBox Grid.Row="0"
 Grid.Column="1"
 Text="{Binding Path=Entity.UserName}" />
<Label Grid.Row="1"
 Content="First Name" />
<TextBox Grid.Row="1"
 Grid.Column="1"
 Text="{Binding Path=Entity.FirstName}" />
<Label Grid.Row="2"
 Content="Last Name" />
<TextBox Grid.Column="1"
 Grid.Row="2"
 Text="{Binding Path=Entity.LastName}" />
<Label Grid.Row="3"
 Content="Email Address" />
<TextBox Grid.Column="1"
 Grid.Row="3"
 Text="{Binding Path=Entity.EmailAddress}" />

After the labels and text box controls, add a stack panel for the three buttons.

<StackPanel Grid.Column="1"
 Grid.Row="4"
 Orientation="Horizontal">
 <Button Content="Cancel"
 IsCancel="True" />
 <Button Content="Delete"
 IsCancel="True"
 Click="DeleteButton_Click" />
 <Button Content="Save"
 IsDefault="True"
 Click="SaveButton_Click" />
</StackPanel>

Make sure to create the DeleteButton_Click() and SaveButton_Click() event
procedures.

Create User Detail View Model
In the UserDetailControl user control you see, you are binding to the properties
within an Entity object. This Entity object is going to be in a view model you should
create in the ViewModels folder named UserDetailViewModel.cs.
After creating this file, inherit from the UserListViewModel from the previous blog
post. This provides you all the functionality of the UserListViewModel class, plus
anything you add to the UserDetailViewModel class.

Build WPF Screens Using Inheritance and Aggregation

4 Build WPF Screens Using Inheritance and Aggregation
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

public class UserDetailViewModel : UserListViewModel
{
}

Add the appropriate properties and methods to support the detail section of this
screen. Add a property named Entity that is of the type User.

private User _Entity = new User();

public User Entity
{
 get { return _Entity; }
 set {
 _Entity = value;
 RaisePropertyChanged("Entity");
 }
}

Override the LoadUsers Method
After loading the list of users, it would be nice to set the Entity property to the first
item in the list. This will cause the binding on the user detail control to display the
values for the user in the bound text box controls. Override the LoadUsers()
method, call the base.LoadUsers() method, then check to ensure that the Users
collection has some users. Set the Entity property to the first user in the Users
collection.

public override void LoadUsers()
{
 // Load all users
 base.LoadUsers();

 // Set default user
 if (Users.Count > 0) {
 Entity = Users[0];
 }
}

Add Save Method
Add a Save() method to the user detail view model. You are not going to write this
code right now, but let's at least create the stub method that can be called from the
click event of the Save button.

Create User Detail View Model

Build WPF Screens Using Inheritance and Aggregation 5
Copyright © 2012-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

public void Save()
{
 // TODO: Save User
}

Add Delete Method
Add a Delete() method to the user detail view model. You are not going to write this
code right now, but let's at least create the stub method that can be called from the
click event of the Delete button.

public void Delete()
{
 // TODO: Delete User

}

Test User Detail Control
If you want, you can now test the UserDetailControl control to see if it displays the
appropriate data from the view model. Open the UserDetailControl.xaml file and add
an XML namespace.

xmlns:vm="clr-namespace:WPF.Sample.ViewModels"

Add a <UserControl.Resources> and create an instance of the
UserDetailViewModel class.

<UserControl.Resources>
 <vm:UserDetailViewModel x:Key="viewModel" />
</UserControl.Resources>

Modify the <Grid> element to bind to the view model instance created the XAML.

<Grid DataContext="{StaticResource viewModel}">

Open the UserDetailControl.xaml.cs file and add a field to reference the
UserDetailViewModel class.

Build WPF Screens Using Inheritance and Aggregation

6 Build WPF Screens Using Inheritance and Aggregation
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

UserDetailViewModel _viewModel = null;

Modify the constructor to retrieve the instance of the view model class created by
XAML. Once you have the instance of the view model, invoke the LoadUsers()
method to load the list and to set the Entity property to the first user.

public UserDetailControl()
{
 InitializeComponent();

 _viewModel = (UserDetailViewModel)this.Resources["viewModel"];

 _viewModel.LoadUsers();
}

Open the MainWindow.xaml.cs file and in the MenuUsers_Click event add an
instance of the UserDetailControl control to the contentArea Children collection.

private void MenuUsers_Click(object sender, RoutedEventArgs e)
{
 contentArea.Children.Add(new UserDetailControl());
}

Try it Out
Run the application, click on the Users menu, and you should see the first user's
detail information appear in the control you created.

Back out the Changes
Now that you have tested the changes, remove the code you just added to the
UserDetailControl.xaml.cs file and the changes you made to the XAML too.

Aggregate the List and Detail Controls
You now have two stand-alone user controls that you need to combine into one. To
accomplish this, aggregate the list and detail user controls onto another user control
in order to build a screen that looks like Figure 1.

Aggregate the List and Detail Controls

Build WPF Screens Using Inheritance and Aggregation 7
Copyright © 2012-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Create User Maintenance User Control
Create a new user control named UserMaintenanceControl.xaml in the
UserControls folder. Add a <ScrollViewer> within the <Grid>, and a <StackPanel>
within the <ScrollViewer> as shown below.

<Grid>
 <ScrollViewer VerticalScrollBarVisibility="Auto">
 <StackPanel>

 </StackPanel>
 </ScrollViewer>
</Grid>

Build the solution to ensure all user controls are available in the toolbox. Open the
Toolbox if it is not already visible. Drag and Drop the UserListControl control into
the <StackPanel>. Drag and Drop the UserDetailControl control into the
<StackPanel> below the UserListControl control. Your <StackPanel> control
should look like the following.

<StackPanel>
 <local:UserListControl DataContext="{StaticResource viewModel}" />
 <local:UserDetailControl DataContext="{StaticResource viewModel}"
/>
</StackPanel>

NOTE: The prefixes in front of your user controls may be different than "local," if so,
that is just fine.

Create User Maintenance View Model
Just as you created a UserDetailViewModel that inherited from the
UserListViewModel, you are going to add one more view model that inherits from
the UserDetailViewModel. Add a new view model class named
UserMaintenanceViewModel.cs in the ViewModels folder. You are creating this
class to bind to the UserMaintenanceControl user control you just created.

public class UserMaintenanceViewModel : UserDetailViewModel
{
}

Open the UserMaintenanceControl.xaml file and add an XML namespace.

Build WPF Screens Using Inheritance and Aggregation

8 Build WPF Screens Using Inheritance and Aggregation
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

xmlns:vm="clr-namespace:WPF.Sample.ViewModels"

Add a <UserControl.Resources> element and create an instance of the
UserMaintenanceViewModel class. Assign the key of "viewModel" to this view
model object.

<UserControl.Resources>
 <vm:UserMaintenanceViewModel x:Key="viewModel" />
</UserControl.Resources>

Modify the <Grid> element to bind the DataContext to this resource.

<Grid DataContext="{StaticResource viewModel}">

By binding the view model instance to the <Grid>, all controls within the <Grid> are
also given the same data context.

Modify User List Control
The UserListControl user control is bound to the UserListViewModel through XAML.
It is now time to remove that binding just like you did with the UserDetail user
control. Open the UserListControl.xaml file and remove the DataContext attribute
from the <Grid>.

<Grid DataContext="{StaticResource viewModel}" >

Remove the <UserControl.Resources>.

<UserControl.Resources>
 <vm:UserListViewModel x:Key="viewModel" />
</UserControl.Resources>

Remove the XML namespace that references the view model namespace.

xmlns:vm="clr-namespace:WPF.Sample.ViewModels"

Add the SelectedItem attribute to the <ListView> control to bind to the Entity
property you added to the UserDetailViewModel class.

<ListView ItemsSource="{Binding Path=Users}"
 SelectedItem="{Binding Path=Entity}">

Get a Reference to View Model

Build WPF Screens Using Inheritance and Aggregation 9
Copyright © 2012-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Open MainWindow.xaml.cs and modify the MenuUsers_Click() event. Instead of
adding an instance of the UserListControl user control to the Children collection of
the contentArea, add an instance of the UserMaintence user control.

private void MenuUsers_Click(object sender, RoutedEventArgs e)
{
 contentArea.Children.Add(new UserMaintenanceControl());
}

Try it Out
Run the application.
Click on the Users menu and you should see the list of users appear.
The detail should be filled in with the information from the first user in the list.
Click on the other rows in the user list to see the detail information for each of them
appear in the text box controls.

Get a Reference to View Model
You will want to get a reference to the UserMaintenanceViewModel object in the
code-behind of your detail user controls so you can invoke the Save() and Delete()
methods. Open the UserDetailControl.xaml file and add the Loaded event.

<UserControl
x:Class="WPF_MVVM_ListDetails.Samples.UserDetailControl"
 xmlns="..."
 xmlns="..."
 mc:Ignorable="d"
 d:DesignHeight="450"
 d:DesignWidth="800"
 Loaded="UserControl_Loaded">

Open the UserDetailControl.xaml.cs file and add a using statement at the top of
the file.

using WPF.Sample.ViewModels;

Create a private variable to reference the UserMaintenanceViewModel class.

// Create a reference to the view model
private UserMaintenanceViewModel _viewModel = null;

Build WPF Screens Using Inheritance and Aggregation

10 Build WPF Screens Using Inheritance and Aggregation
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Modify the UserControl_Loaded() event to get a reference to the
UserMaintenanceViewModel class. You retrieve this reference by casting the
DataContext property on the UserDetailControl class to the _viewModel variable
you created.

private void UserControl_Loaded(object sender, RoutedEventArgs e)
{
 // DataContext is instance of the UserMaintenanceViewModel class
 _viewModel = (UserMaintenanceViewModel)this.DataContext;
}

In the btnSubmit_Click event procedure, you may now invoke the Save() method on
the _viewModel object as shown in the code below.

private void btnSubmit_Click(object sender, RoutedEventArgs e)
{
 // Save User
 _viewModel.Save();

 MessageBox.Show("User: " + _viewModel.Entity.UserName
 + " has been saved.");
}

You may also invoke the Delete() method on the view model class in the
btnDelete_Click() event as shown below.

private void btnDelete_Click(object sender, RoutedEventArgs e)
{
 // Delete User
 _viewModel.Delete();

 MessageBox.Show("User: " + _viewModel.Entity.UserName
 + " has been deleted.");
}

Try it Out
Run the application and click on the Users menu. Click on the Save button to see
the message box appear. Click on the Delete button to see another message box
appear.

Other Examples of Aggregation

Build WPF Screens Using Inheritance and Aggregation 11
Copyright © 2012-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Other Examples of Aggregation
I have used this approach for many of my WPF applications. Figure 3 is a screen
shot from the PDSA Developer Utilities (www.pdsa.com/devutils). Each tab "Main,"
"Source Control," and "Log" is a different user control. Figure 4 shows a couple of
tabs from the Computer Cleaner. Each of these tabs is very different from one
another. Breaking each tab into their own separate user controls keeps the
functionality separated so you don't have one very large WPF XAML file. This
makes it easier to develop, test, and potentially reuse each user control.

http://www.pdsa.com/devutils

Build WPF Screens Using Inheritance and Aggregation

12 Build WPF Screens Using Inheritance and Aggregation
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 3: The Project Cleaner utility uses a separate user control for each tab.

Other Examples of Aggregation

Build WPF Screens Using Inheritance and Aggregation 13
Copyright © 2012-2018 by Paul D. Sheriff
All rights reserved. Reproduction is strictly prohibited.

Figure 4: The Computer Cleaner utility uses a separate user control for each tab.

Build WPF Screens Using Inheritance and Aggregation

14 Build WPF Screens Using Inheritance and Aggregation
Copyright © 2012-2018 by Paul D. Sheriff

All rights reserved worldwide. Reproduction is strictly prohibited.

Summary
In this blog post, you learned to use aggregation to build a screen from a couple of
different user controls. Using aggregation allows you to build each piece of a screen
separately. You may test the functionality separately, then using inheritance of the
view models, you can bring all the functionality together. Sometimes, you must do a
little hooking up of view models to test, then remove that functionality, but I find the
extra work worth the effort.

Source Code
NOTE: You can download the sample code for this article by visiting my website at
http://www.pdsa.com/downloads. Select “Fairway/PDSA Blog,” then select “Build
Large WPF Screens Using Inheritance and Aggregation” from the dropdown list.

http://www.fairwaytech.com/downloads

	Build WPF Screens Using Inheritance and Aggregation
	The Sample Application
	Create User Detail User Control
	Create User Detail View Model
	Override the LoadUsers Method
	Add Save Method
	Add Delete Method
	Test User Detail Control
	Try it Out
	Back out the Changes

	Aggregate the List and Detail Controls
	Create User Maintenance User Control
	Create User Maintenance View Model
	Modify User List Control
	Try it Out

	Get a Reference to View Model
	Try it Out

	Other Examples of Aggregation
	Summary
	Source Code

