

Add Attributes to Unit Tests
In my previous blog posts, I introduced you to creating unit tests with Visual
Studio. The following is the list of blog posts published thus far.

• Introduction to Unit Testing in Visual Studio

• Avoid Hard-Coding in Unit Tests

• Unit Test Initialization and Cleanup
You have seen a few different attributes such as [TestClass], [TestMethod],
and [TestInitialize] used to decorate classes and methods. There are several
more attributes that you should be aware of. You may or may not use all the
attributes presented in this blog post, but you may have a need for them at
some time or another.

DataSource Attribute
The unit test framework in Visual Studio can data-drive your unit tests. This
means you can read data from a data store and execute a single test
repeatedly using the data read in. A later blog post will discuss how to use
data-driven tests, so this attribute is not covered here.

Description Attribute
Add a Description attribute to any unit test method to describe why you wrote
a particular unit test. It is recommended that you use good, long, description
name for the unit test method name as well as the Description attribute. This
attribute is not used by the unit test framework, nor does it show up anywhere
within the Test Explorer window.

Add Attributes to Unit Tests

2 Add Attributes to Unit Tests
Copyright © 2017 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

[Description("Check to see if a file exists.")]
public void FileNameDoesExist() {
}

[Description("Check to see if file does not exist.")]
public void FileNameDoesNotExist() {
}

[Description("Check for a thrown ArgumentNullException.")]
public void
 FileNameNullOrEmpty_ThrowsArgumentNullException () {
}

[Description("Check for a thrown ArgumentNullException
 using ExpectedException.")]
public void FileNameNullOrEmpty_
 ThrowsArgumentNullException_UsingAttribute () {
}

DeploymentItem Attribute
You may add as many DeploymentItem attributes as you need to specify files
and folders to copy to the directory where the unit test runs. The
DeploymentItem attribute accepts one or two parameters. The first parameter
is a folder or a file name. The path is always relative the build output folder.
The second parameter, if passed, is to a new path to copy the data in the first
parameter. This second path can be relative to the output folder, or can be an
absolute path. It is highly recommended you use a relative folder to allow
tests to run seamlessly on different machines.
For our simple example, you do not need to use any DeploymentItem
attributes, but below is a sample that would copy two files named
DeploymentFile1.txt and DeploymentFile2.txt to the build output folder. It is
assumed these two files already exist. If the folder or file does not exist, no
error is thrown when running in Visual Studio, the test simply continues.
However, if you use the command line utility, a warning is generated.

 Ignore Attribute

Add Attributes to Unit Tests 3
Copyright © 2017 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

[DeploymentItem("DeploymentFile1.txt")]
[DeploymentItem("DeploymentFile2.txt")]
public void FileNameDoesExist() {

}

Ignore Attribute
The Ignore attribute is intended to be a temporary attribute you add to skip
one or more unit test methods.

[Ignore]
public void FileNameDoesExist() {

}

Owner Attribute
The Owner attribute allows you to specify the name of the developer
responsible for the unit test. This helps with the assignment of work items to
the developer of a unit test that breaks.

Add Attributes to Unit Tests

4 Add Attributes to Unit Tests
Copyright © 2017 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

[Owner("PaulS")]
public void FileNameDoesExist() {
}

[Owner("PaulS")]
public void FileNameDoesNotExist() {
}

[Owner("JohnK")]
public void
 FileNameNullOrEmpty_ThrowsArgumentNullException () {
}

[Owner("JohnK")]
public void FileNameNullOrEmpty_
 ThrowsArgumentNullException_UsingAttribute () {
}

After the test runs, right mouse click on the test results in the Text Explorer
window and select the Group By menu (Figure 1).

Figure 1: Right mouse click to group by traits

Next select the Traits menu to sort by any attributes you have added (Figure
2).

 Priority Attribute

Add Attributes to Unit Tests 5
Copyright © 2017 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

Figure 2: The Test Explorer window can group results by different attributes you
add.

Priority Attribute
The Priority attribute, like the Owner attribute, is considered a “Trait” by the
Test Explorer window. It is not used by the unit test framework itself, but can
be grouped in the Test Explorer window (Figure 3). When using the
VSTest.Console.exe command-line utility, you may filter the tests to run by
the Priority attribute.

Add Attributes to Unit Tests

6 Add Attributes to Unit Tests
Copyright © 2017 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

[Priority(0)]
public void FileNameDoesExist() {
}

[Priority(1)]
public void FileNameDoesNotExist() {
}

[Priority(1)]
public void
 FileNameNullOrEmpty_ThrowsArgumentNullException () {
}

[Priority(0)]
public void FileNameNullOrEmpty_
 ThrowsArgumentNullException_UsingAttribute () {
}

Figure 3: Tests can display under multiple traits.

 TestCategory Attribute

Add Attributes to Unit Tests 7
Copyright © 2017 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

TestCategory Attribute
The TestCategory attribute, like Owner and Priority, is a “Trait” you may group
upon in the Test Explorer window (Figure 4). You define any category name
you wish and assign that name to one or many tests. After all tests have run,
you may filter and sort within the Test Explorer window on the category
names.

[TestCategory("NoException")]
public void FileNameDoesExist() {
}

[TestCategory("NoException")]
public void FileNameDoesNotExist() {
}

[TestCategory("Exception")]
public void
 FileNameNullOrEmpty_ThrowsArgumentNullException () {
}

[TestCategory("Exception")]
public void FileNameNullOrEmpty_
 ThrowsArgumentNullException_UsingAttribute () {
}

Add Attributes to Unit Tests

8 Add Attributes to Unit Tests
Copyright © 2017 by PDSA, Inc.

All rights reserved worldwide. Reproduction is strictly prohibited.

Figure 4: Categories are common traits to use besides Owner.

Timeout Attribute
Use the Timeout attribute to specify how long a specific method is allowed to
run before the unit test framework kills the test and marks it as a failure. The
value you specify is expressed in milliseconds. In the following example, the
unit test framework will allow the method to execute for only 5 seconds before
it will stop the execution and throw an AssertFailedException.

 Summary

Add Attributes to Unit Tests 9
Copyright © 2017 by PDSA, Inc.
All rights reserved. Reproduction is strictly prohibited.

[Timout(5000)]
public void FileNameNullOrEmpty_
 ThrowsArgumentNullException_UsingAttribute () {
}

Summary
In this blog post you learned about many of the attributes you may apply to
unit test classes and methods. The most common attributes you should add
are Description, Owner and TestCategory. Description is optional, and should
be used in combination with a descriptive unit test method name. The Owner,
Priority and TestCategory attributes may be grouped within the Test Explorer
window.

Sample Code
You can download the code for this sample at www.pdsa.com/downloads.
Choose the category “PDSA Blogs”, then locate the sample Add Attributes
to Unit Tests.

http://www.pdsa.com/downloads

	Add Attributes to Unit Tests
	DataSource Attribute
	Description Attribute
	DeploymentItem Attribute
	Ignore Attribute
	Owner Attribute
	Priority Attribute
	TestCategory Attribute
	Timeout Attribute
	Summary
	Sample Code

